Abstract:
Embodiments include devices and methods for an unmanned autonomous vehicle (UAV) to receive manned aviation data from communication equipment available on the UAV without requiring the use of manned aviation radios and transponder equipment. A processor of the UAV may receive manned aviation data over a communication link with a communication network (e.g., the Internet) coupled to a server or network element that has access to manned aviation data. Communications with the communication network may be accomplished via the same communication channels used to transmit and receive mission-critical and payload communications. The processor may analyze the manned aviation data stream to obtain and identify relevant data, and may adjust a parameter of the UAV based on the analyzed manned aviation data stream. In various embodiments, the processor of the UAV may send UAV flight information to the communication network for inclusion in a manned aviation radio system broadcast.
Abstract:
An apparatus and method for transmitting an indicator of channel quality while minimizing the use of a broadcast channel is described. A metric of forward link geometry of observed transmission signals is determined. An indicator of channel quality value is determined as a function of the observed transmission signals. An access sequence is selected, randomly, from one group of a plurality of groups of access sequences, wherein each of the plurality of groups of access sequences correspond to different ranges of channel quality values.
Abstract:
The disclosure is directed to using a change in motion to improve place of relevance (PoR) detection. An aspect determines whether or not a motion state of a mobile device has changed to a new motion state, determines whether or not to trigger the mobile device to scan for available local wireless networks if the motion state has changed, and identifies a PoR based on the scanning.
Abstract:
Systems and methods for providing application-controlled, power-efficient context (state) classification are described herein. An apparatus for performing context classification with adjustable granularity as described herein includes a classifier controller configured to receive a request for a context classification and a granularity input associated with the request; and a context classifier communicatively coupled to the classifier controller and configured to receive the request and the granularity input from the classifier controller, to select a resource usage level for the context classification based on the granularity input, wherein a granularity input indicating a higher granularity level is associated with a higher resource usage level and a granularity input indicating a lower granularity level is associated with a lower resource usage level, and to perform the context classification at the selected resource usage level.
Abstract:
A system and method are disclosed that may selectively switch a station's association from a first AP to a second AP based, at least in part, on whether an indication of first RSSI values for the first AP is greater than an indication of second RSSI values for the second AP by more than a difference value. For some embodiments, the difference value may be dynamically adjusted based, at least in part, on the first RSSI values, on a connection history of the station, and/or on a user selection.
Abstract:
Various embodiments include methods of managing network communication of a drone. The methods may include determining which type of at least two types of communications to classify a communication designated for transmission to or from the drone. The at least two types of communications may include operational safety communications and payload communications. A communication service configuration may be assigned based on the determined type of communications. The communications to or from the drone may be transmitted using the assigned communication service configuration.
Abstract:
Various embodiments include methods for dynamic antenna steering on an unmanned aerial vehicle (UAV). The methods may include orienting an antenna on the UAV towards a serving ground station based on the UAV's position, orienting the antenna towards a neighboring ground station when it is time to conduct signal measurements of the neighboring ground station, conducting the signal measurements while orienting the antenna towards the neighboring ground station, and reorienting the antenna towards the serving ground station. Methods further include orienting a ground station antenna towards a UAV by obtaining a position of the UAV, calculating a vector between the position of the UAVs and the ground station, determining a direction to steer a beam based on the calculated vector, and steering the beam to the determined direction for the UAV.
Abstract:
Methods and apparatus for transmitting modulation parameters are disclosed. The apparatus and methods provide determination of when a particular modulation scheme is used by an access point. One or more modulation parameters associated with the particular modulation scheme and one or more timing values associated with the particular modulation scheme are then determined and transmitted using a portion of a broadcast channel transmitted by the access point.
Abstract:
Embodiments include devices and methods for managing network communication of an unmanned autonomous vehicle (UAV). A processor of the UAV may determine an altitude of the UAV. The processor may optionally also determine a speed or vector of the UAV. Based on the determined altitude and/or speed/vector of the UAV, the processor may adjust the communication parameter of the communication link between the UAV and a communication network. The processor may transmit signals based on the adjusted communication parameter, which may reduce radio frequency interference caused by the transmissions of the UAV with the communication network.
Abstract:
Methods and apparatus for transmitting modulation parameters are disclosed. The apparatus and methods provide determination of when a particular modulation scheme is used by an access point. One or more modulation parameters associated with the particular modulation scheme and one or more timing values associated with the particular modulation scheme are then determined and transmitted using a portion of a broadcast channel transmitted by the access point.