Abstract:
A method includes cellular vehicle-to-everything (CV2X) allocation collision detection and reporting. An allocation collision detection module detects control channel allocations from transmitting user equipments (UEs) in each time period of a group of time periods. A quantity of detected control channel allocations is determined in each time period. A report is then built and transmitted to at least one of the transmitting UEs. The report indicates collisions in each time period, based on the quantity and a location of the detected control channels in each time period, as well as based on a type of UE interface.
Abstract:
Various aspects may provide methods for supporting confirmable and non-confirmable notification selection for LwM2M communications that may be performed by a processor of an LwM2M server and/or a processor of an LwM2M client computing device, such as an Internet of Things (IoT) device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be an MBMS receiver device. The MBMS receiver device receives at least one packet associated with an MBMS service. A configuration for providing the at least one packet to a UE is determined. The configuration may be one of a plurality of different configurations. The plurality of configurations may include at least a first configuration and a second configuration. The MBMS receiver device processes the received at least one packet based on the configuration. The MBMS receiver device sends the processed at least one packet to the UE based on the configuration.
Abstract:
Embodiment systems, methods, and devices enable data streams of a broadcast service to be carried in multiple communication sessions in any transport protocol providing file transport information and the transmission of objects, an example of which is File Delivery Over Unidirectional Transport (“FLUTE”). A session description may include a category attribute indicating the type of data carried in such a protocol session. A schedule fragment may include references to a session description for each such protocol session associated with a service. A common listing of configuration parameters may be generated for all such protocol sessions associated with a service. A different listing of configuration parameters may be generated for each such protocol session associated with a service. A flag setting in a diary file may indicate one or more such protocol session associated with a service over which in-band update fragments may be broadcast.
Abstract:
A method, an apparatus, and a computer program product for wireless communication enable user equipment operating in a current cell that provides a multimedia broadcast/multicast service to distinguish between neighboring cells that have different operational characteristics. The presence of a neighboring cell is identified while the user equipment is operating in a first cell and it is determined whether the neighboring cell provides services different from the services provided in the current cell, based on information maintained by the user equipment. The user equipment may move to the neighboring cell to obtain better or different service.
Abstract:
Systems, methods, and devices of the various embodiments enable a device to use a modified segment availability time. In various embodiments, a Broadcast Multimedia Service Center (BMSC) server may be enabled to modify a segment availability timeline in which the availability times of the segments. In various embodiments, segment availability time adjustments may be made at a service layer of the receiver device. In various embodiments, segment availability time adjustments may be made by a client application on the receiver device.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for reporting signal quality in overlapping Multimedia Broadcast Single Frequency Networks (MBSFN) areas. A UE may determine a signal quality estimate for each of two or more overlapping MBSFN areas based on Signal to Noise Ratio (SNR) information and Modulation and Coding Scheme (MCS) information for the MBSFN area. The UE may then determine a combined signal quality based on the signal quality estimates of the MBSFN areas.
Abstract:
Techniques are provided for receiving one or more representations of content wirelessly. The method may involve receiving a media presentation description (MPD) that includes parameters for reception of data segments for multiple representations of content via broadcast transmission and unicast transmission. The method may involve determining whether the broadcast transmission or the unicast transmission is appropriate for reception of the data segments, and selecting a given representation from among the multiple representations of the content based on a criteria of the mobile entity. The method may involve receiving the data segments for the given representation based at least in part on the parameters for the determined one of the broadcast transmission and the unicast transmission.
Abstract:
Systems, methods, and devices of the various embodiments provide a multipath communication scheduler for an in-vehicle computing device, such as a vehicle's autonomous driving system, vehicle's telematics unit, vehicle's control system, etc. In various embodiments, a centralized scheduler for an in-vehicle computing device may assign packets for transport to a plurality of modems based at least in part on delivery delays associated with the plurality of modems. In various embodiments, delivery delays may be determined based on one or more of queue sizes of the plurality of modems, delivery rate estimates of the plurality of modems, and end to end delay estimates.
Abstract:
A user equipment (UE) may be configured to join a group call, which may include mission critical (MC) data. The UE may be configured to receive, through a broadcasted group discovery channel (GDCH), a list of group call services and corresponding session description protocol (SDP) information for establishing the group call services. The UE may be configured to determine at least one group call service of the group call services to receive. The UE may be configured to establish the at least one group call service based at least in part on the corresponding SDP information received through the broadcasted GDCH.