Abstract:
A switchable supply network for powering multiple digital islands. In one embodiment, a first digital island includes a first power collapsible circuit and a first retention circuit, and a second digital island includes a second power collapsible circuit and a second retention circuit. In a normal mode of operation, the first digital island is provided a first supply voltage and a second digital island is provided a second supply voltage higher than the first supply voltage. In a transition mode the second power collapsible circuit is powered down and the second supply voltage is lowered and provided to the second retention circuit. When the second supply voltage falls below the first supply voltage, the first power collapsible circuit is powered down. The second supply voltage is now provided only to the retention circuits, and is furthered lowered in a retention mode to a final retention voltage.
Abstract:
A biomedical system includes: a medical implant capsule including an outer body, an electric device retained by the outer body, and a power input coupled to the electric device, the medical implant capsule having a length, along an axis, and a width transverse to the axis; and an antenna coupled to the power input and configured to: receive power wirelessly and to deliver the power to the power input; wrap around the medical implant capsule, in a transit state, transverse to the length of the medical implant capsule for a distance greater than the width of the medical implant capsule; and expand to a deployed state, at least part of the antenna being further from the axis in the deployed state than in the transit state.
Abstract:
Aspects relate to provision of a control message, such as an extension data section, that includes an indication of the repeat of highest priority data sections. The control message may be generated in a distributed unit (DU) and conveyed to a radio unit (RU) via a fronthaul link The control message may include either a flag or bits in a field of an extension data section allowing a RU to determine repeat of the highest priority data section based on reception of the flag or processing of the bit value in the field. Additionally, the indication of repetition of the highest priority section may be based on a section identifier transmitted by a DU, wherein an RU receiving the section identifier may determine repeat of the highest priority data section by tracking the received section identifier.
Abstract:
A power management system for stack memory thread tasks according to some examples of the disclosure may include a non-collapsible memory region, a collapsible memory region configured below the non-collapsible memory region, a memory management unit in communication with the non-collapsible memory region and the collapsible memory region, the memory management unit operable to allocate a portion of the non-collapsible memory region and a portion of the collapsible memory region to a thread task upon initialization of the thread task and power down the portion of the collapsible memory region allocated to the thread task upon receiving a power down command.