-
公开(公告)号:US11875264B2
公开(公告)日:2024-01-16
申请号:US16823227
申请日:2020-03-18
Applicant: R4N63R Capital LLC
Inventor: Krishnendu Chaudhury , Ananya Honnedevasthana Ashok , Sujay Narumanchi , Devashish Shankar , Ashish Mehra
IPC: G06N3/084 , G06F18/214 , G06F18/21 , G06F18/23 , G06F18/2413 , G06F18/2431 , G06F18/22 , G06F18/2321 , G06N3/045 , G06N3/047 , G06V20/40 , G06V10/74 , G06V10/762 , G06V10/77 , G06V10/82 , G06V40/20
CPC classification number: G06N3/084 , G06F18/214 , G06F18/2163 , G06F18/23 , G06F18/2431 , G06F18/24137 , G06V10/761 , G06V10/763 , G06V10/7715 , G06V10/82 , G06V20/41 , G06V20/49 , G06V40/20 , G06V20/44
Abstract: An event detection method can include encoding a plurality of training video snippets into low dimensional descriptors of the training video snippets in a code space. The low dimensional descriptors of the training video snippets can be decoded into corresponding reconstructed video snippets. One or more parameters of the encoding and decoding can be adjusted based on one or more a loss functions to reduce a reconstruction error between the one or more training video snippets and the corresponding one or more reconstructed video snippets, to reduce a class entropy of the plurality of event classes of the code space, to increase fit of the training video snippet, and/or to increase compactness of the code space. The method can further include encoding one or more labeled video snippets of a plurality of event classes into low dimensional descriptors of the labeled video snippets in the code space. The plurality of event classes can be mapped to class clusters corresponding to the low dimensional descriptors of the labeled video snippets. After training, query video snippets can be encoded into corresponding low dimensional descriptors in the code space. The low dimensional descriptors of the query video snippets can be classified based on their respective proximity to a nearest one of a plurality of class cluster of the code space. An event class of the query video snippet can be determined based on the class cluster classification.
-
公开(公告)号:US12130610B2
公开(公告)日:2024-10-29
申请号:US16181194
申请日:2018-11-05
Applicant: R4N63R Capital LLC
Inventor: Prasad Narasimha Akella , Ananya Honnedevasthana Ashok , Zakaria Ibrahim Assoul , Krishnendu Chaudhury , Sameer Gupta , Sujay Venkata Krishna Narumanchi , David Scott Prager , Devashish Shankar , Ananth Uggirala , Yash Raj Chhabra
IPC: G06F16/24 , G05B19/418 , G06F9/448 , G06F9/48 , G06F11/07 , G06F11/34 , G06F16/22 , G06F16/23 , G06F16/2455 , G06F16/901 , G06F16/9035 , G06F16/904 , G06F30/20 , G06F30/23 , G06N3/008 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06N7/01 , G06N20/00 , G06Q10/06 , G06Q10/0631 , G06Q10/0639 , G06T19/00 , G06V10/25 , G06V10/44 , G06V10/82 , G06V20/52 , G06V40/20 , G09B19/00 , B25J9/16 , G01M99/00 , G05B19/423 , G05B23/02 , G06F18/21 , G06F111/10 , G06F111/20 , G06N3/006 , G06Q10/083 , G06Q50/26 , G16H10/60
CPC classification number: G05B19/4183 , G05B19/41835 , G06F9/4498 , G06F9/4881 , G06F11/0721 , G06F11/079 , G06F11/3452 , G06F16/2228 , G06F16/2365 , G06F16/24568 , G06F16/9024 , G06F16/9035 , G06F16/904 , G06F30/20 , G06F30/23 , G06N3/008 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06N7/01 , G06N20/00 , G06Q10/06 , G06Q10/063112 , G06Q10/06316 , G06Q10/06393 , G06Q10/06395 , G06Q10/06398 , G06T19/006 , G06V10/25 , G06V10/454 , G06V10/82 , G06V20/52 , G06V40/20 , G09B19/00 , B25J9/1664 , B25J9/1697 , G01M99/005 , G05B19/41865 , G05B19/423 , G05B23/0224 , G05B2219/32056 , G05B2219/36442 , G06F18/217 , G06F2111/10 , G06F2111/20 , G06N3/006 , G06Q10/083 , G06Q50/26 , G16H10/60
Abstract: The systems and methods provide an action recognition and analytics tool for use in manufacturing, health care services, shipping, retailing and other similar contexts. Machine learning action recognition can be utilized to determine cycles, processes, actions, sequences, objects and or the like in one or more sensor streams. The sensor streams can include, but are not limited to, one or more video sensor frames, thermal sensor frames, infrared sensor frames, and or three-dimensional depth frames. The analytics tool can provide for automatic creation of certificates for each instance of a subject product or service. The certificates can string together snippets of the sensor streams along with indicators of cycles, processes, action, sequences, objects, parameters and the like captured in the sensor streams.
-
公开(公告)号:US12055920B2
公开(公告)日:2024-08-06
申请号:US16180985
申请日:2018-11-05
Applicant: R4N63R Capital LLC
Inventor: Prasad Narasimha Akella , Ananya Honnedevasthana Ashok , Krishnendu Chaudhury , Ashish Gupta , Sujay Venkata Krishna Narumanchi , David Scott Prager , Devashish Shankar , Ananth Uggirala
IPC: G05B19/418 , G06F9/448 , G06F9/48 , G06F11/07 , G06F11/34 , G06F16/22 , G06F16/23 , G06F16/2455 , G06F16/901 , G06F16/9035 , G06F16/904 , G06F30/20 , G06F30/23 , G06F30/27 , G06N3/008 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06N7/01 , G06N20/00 , G06Q10/06 , G06Q10/0631 , G06Q10/0639 , G06T19/00 , G06V10/25 , G06V10/44 , G06V10/82 , G06V20/52 , G06V40/20 , G09B19/00 , B25J9/16 , G01M99/00 , G05B19/423 , G05B23/02 , G06F18/21 , G06F111/10 , G06F111/20 , G06N3/006 , G06Q10/083 , G06Q50/26 , G16H10/60
CPC classification number: G05B19/4183 , G05B19/41835 , G06F9/4498 , G06F9/4881 , G06F11/0721 , G06F11/079 , G06F11/3452 , G06F16/2228 , G06F16/2365 , G06F16/24568 , G06F16/9024 , G06F16/9035 , G06F16/904 , G06F30/20 , G06F30/23 , G06F30/27 , G06N3/008 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06N7/01 , G06N20/00 , G06Q10/06 , G06Q10/063112 , G06Q10/06316 , G06Q10/06393 , G06Q10/06395 , G06Q10/06398 , G06T19/006 , G06V10/25 , G06V10/454 , G06V10/82 , G06V20/52 , G06V40/20 , G09B19/00 , B25J9/1664 , B25J9/1697 , G01M99/005 , G05B19/41865 , G05B19/423 , G05B23/0224 , G05B2219/32056 , G05B2219/36442 , G06F18/217 , G06F2111/10 , G06F2111/20 , G06N3/006 , G06Q10/083 , G06Q50/26 , G16H10/60
Abstract: The systems and methods provide an action recognition and analytics tool for use in manufacturing, health care services, shipping, retailing and other similar contexts. Machine learning action recognition can be utilized to determine cycles, processes, actions, sequences, objects and or the like in one or more sensor streams. The sensor streams can include, but are not limited to, one or more video sensor frames, thermal sensor frames, infrared sensor frames, and or three-dimensional depth frames. The analytics tool can provide for process validation, anomaly detection and in-process quality assurance.
-
-