Abstract:
Disclosed examples include power conversion systems, computer readable mediums and methods for mitigating input filter resonance, in which a controller operates an active front end (AFE) rectifier in a first mode to turn a single rectifier switching device on and off and measures a filter voltage or current signal while all of the rectifier switches are off. The controller determines a resonant frequency based on a transient response of the measured voltage or current signal, and selectively adjusts a rectifier control parameter to mitigate filter resonance based on the resonant frequency.
Abstract:
Multilevel inverters, power cells and bypass methods are presented in which a power cell switching circuit is selectively disconnected from the power cell output, and a bypass which is closed to connect first and second cell output terminals to selectively bypass a power stage of a multilevel inverter, with an optional AC input switch to selectively disconnect the AC input from the power cell switching circuit during bypass.
Abstract:
A double fed induction generator (DFIG) converter, methods and computer readable mediums are presented in which rotor side current spikes are attenuated by selectively activating at least one series damping circuit to conduct current through a series damping circuit resistance coupled in series between one or more DFIG rotor leads and a grid side converter in response to a grid fault occurrence or a grid fault clearance, and selectively bypassing the series damping circuit resistance after activating the series damping circuit.
Abstract:
The present techniques include methods and systems for operating converter to maintain a lifespan of the converter. In some embodiments, the operating frequency of the converter may be increased such that stress may be reduced on the bond wires of the converter. More specifically, embodiments involve calculating the aging parameters for certain operating conditions of the converter operating in a maximum power point tracking (MPPT) mode and determining whether the MPPT operation results in aging the converter to a point which reduces the converter lifespan below a desired lifespan. If the MPPT operation reduces the converter lifespan below the desired lifespan, the frequency of the converter may be increased such that the converter may be controlled to operate at a percentage of MPPT. Thus, in some embodiments, power output may be optimized with respect to maintaining a desired lifespan of the converter.
Abstract:
For reducing volume requirements and magnetic flux leakage, a compact inductor includes a first planar core with a first core thickness along a first axis orthogonal to a plane of the first planar core. In addition, the inductor includes a second planar core disposed parallel to the first planar core with a second core thickness along the first axis. The inductor further includes a plurality of electrical windings disposed between and adjacent to an inside plane of the first planar core and an inside plane of the second planar core. The electrical windings may include insulated electrical wires. No magnetic teeth may be disposed between the first planar core and the second planar core. The first axis is parallel to a magnetic axis of each electrical winding.
Abstract:
A method of estimating stator resistance of an induction motor is provided. The method includes applying voltage pulses through two phase paths of the motor for a plurality of electrical cycles to inject current in the motor, wherein the voltage pulses are applied until rotor flux of the motor is substantially stabilized and measuring stator voltage and stator current in response to the applied voltage pulses for each of the plurality of electrical cycles. The method also includes calculating the stator resistance based upon the measured stator voltages and the stator currents.
Abstract:
A system may include an inverter configured to convert a direct current (DC) voltage to an alternating current (AC) voltage. The system may also include a control system communicatively coupled to the inverter. The control system may receive a torque current feedback from a motor and may generate, based on the torque current feedback, a command torque current and a command flux current. The control system may generate, based on the command torque current and the command flux current, a command torque voltage and a command flux voltage and may generate, based on a slip frequency and a rotor frequency, a command frequency. The control system may determine one or more operating parameters for the inverter based on the command frequency, the command torque voltage, and the command flux voltage and may control the inverter based on the one or more operating parameters.
Abstract:
For grid-connected power converter control, a method estimates a d-axis grid voltage from a d-axis reference current modified with a d-axis current and a q-axis current modified with a filter inductive reactance. The method generates a q-axis current error from a direct current (DC) voltage input and a DC bus voltage. The method estimates an observer q-axis grid voltage from a q-axis voltage output. The q-axis grid voltage observer estimates the q-axis grid voltage in a direct/quadrature (dq) reference frame equivalent to an ABC to DQ reference frame transform. The method determines a d-axis voltage output as a function of a d-axis current error and a q-axis current modified with a filter inductive reactance. The method determines a q-axis voltage output as a sum of the q-axis current controller output and the observer q-axis grid voltage.
Abstract:
For grid-connected power converter control, a method estimates a d-axis grid voltage from a d-axis reference current modified with a d-axis current, and a q-axis current modified with a filter inductive reactance. The method generates a q-axis grid voltage from a direct current (DC) voltage input modified with the DC bus voltage modified with a notch filter to balance the voltage input and further reduced with the q-axis current. The method modifies the estimated d-axis grid voltage and the q-axis grid voltage by selectively removing second-order harmonics. The method further determines a d-axis voltage output and a q-axis voltage output as a function of the modified estimated d-axis grid voltage and the modified q-axis grid voltage.
Abstract:
For reducing volume requirements and magnetic flux leakage, a compact inductor includes a first planar core with a first core thickness along a first axis orthogonal to a plane of the first planar core. In addition, the inductor includes a second planar core disposed parallel to the first planar core with a second core thickness along the first axis. The inductor further includes a plurality of electrical windings disposed between and adjacent to an inside plane of the first planar core and an inside plane of the second planar core. The electrical windings may include insulated electrical wires. No magnetic teeth may be disposed between the first planar core and the second planar core. The first axis is parallel to a magnetic axis of each electrical winding.