Abstract:
A method of a device detects a respiratory effort-related arousal in a respiratory airflow signal of a patient. The method may include computing a measure of consistency of inspiratory flow limitation over a plurality of recent breaths from the signal. The method may further include computing a measure of step change in ventilation indicating a sudden big breath. The method may further include computing a measure indicating a degree of confidence of occurrence of a respiratory effort-related arousal from the measure of consistency of inspiratory flow limitation and the measure of the step change in ventilation.
Abstract:
Disclosed is an apparatus for treating a respiratory disorder. The apparatus comprises a pressure device, and a controller, including at least one processor, configured to control the pressure device to: supply, upon initiation of treatment, a flow of pressurised air to the airway of a patient at a treatment pressure according to a pre-sleep profile of pressure versus time, increase, upon detection of sleep onset of the patient, the treatment pressure to a predetermined therapeutic pressure according to a bridging profile of pressure versus time, and supply the flow of pressurised air to the airway of the patient at a therapeutic pressure.
Abstract:
Disclosed is an apparatus for treating a respiratory disorder. The apparatus comprises a pressure device, and a controller, including at least one processor, configured to control the pressure device to: supply, upon initiation of treatment, a flow of pressurized air to the airway of a patient at a treatment pressure according to a pre-sleep profile of pressure versus time, increase, upon detection of sleep onset of the patient, the treatment pressure to a predetermined therapeutic pressure according to a bridging profile of pressure versus time, and supply the flow of pressurized air to the airway of the patient at a therapeutic pressure.
Abstract:
A method for a device detects periodic breathing in a patient. The method may include receiving a series of event intervals bounded by apnea or hypopnea events detected in respiration of the patient, and processing, upon closure of an event interval, the event interval to determine a character of the event interval, such as any of: probably a periodic breathing cycle; probably not a periodic breathing cycle; and uninformative. The method may further include determining whether to change a current periodic breathing state that indicates whether a periodic breathing episode is in progress, based on a history of event interval characters that is long compared to the typical length of a periodic breathing cycle real-time detection of periodic breathing
Abstract:
Methods and apparatus for treating a respiratory disorder, in one aspect, include an apparatus that delivers backup breaths at a sustained timed backup rate that is a function of the patient's spontaneous respiratory rate. Other aspects include apparatus that delivers backup breaths at a rate that gradually increases from a spontaneous backup rate to a sustained timed backup rate or, alternatively, apparatus that oscillates a treatment pressure in antiphase with the patient's spontaneous respiratory efforts when a measure indicative of ventilation is greater than a threshold. Other aspects include apparatus configured to treat Cheyne-Stokes respiration by computing the treatment pressure so as to bring a measure indicative of ventilation of the patient towards a target ventilation that is dependent on the measure indicative of ventilation or, alternatively, by periodically elevating the treatment pressure to a high level for a short time, the high level being high enough and the short time being long enough to induce a central apnea in a patient. Depending on functionality, the foregoing apparatus may comprise an adaptive servo-ventilator or CPAP therapy device.
Abstract:
Apparatus and methods provide compliance management tools such as for respiratory pressure therapy. In some versions, a respiratory pressure therapy system may include one or more processors, such as of a data server, configured to communicate with a computing device and/or a respiratory pressure therapy device. The respiratory pressure therapy device may be configured to deliver respiratory pressure therapy to a patient for a session. The computing device may be associated with the patient. The processor(s) may be further configured to compute a therapy quality indicator of the session from usage data relating to the session. The therapy quality indicator may be a number derived from contributions of a plurality of usage variables for the session in the usage data. The processor(s) may be further configured to present, such as by transmitting, the therapy quality indicator to the computing device. The therapy quality indicator may promote patient compliance.
Abstract:
Respiratory pressure treatment apparatus include automated methodologies for controlling changes to pressure in the presence of sleep disordered breathing events. In an example apparatus, various levels of expiratory pressure relief can provide different pressure reductions for patient comfort during expiration (333-A, 333-B, 333-C). The control parameters for these levels may be automatically modified based on the detection of an open airway. Similarly, in some embodiments, the levels may be automatically adjusted based on a detection of persistent obstruction. In still further embodiments, control parameters associated with a rise time of an early portion of an inspiratory pressure treatment may be automatically adjusted upon detection of flow limitation to permit a change to more aggressive waveforms from more comfortable waveforms for the treatment of sleep disordered breathing events.
Abstract:
Respiratory pressure treatment apparatus include automated methodologies for controlling modulation of pressure during an inspiratory phase or an expiratory phase of patient respiration. The changes in pressure result in various pressure waveforms that may be suitable for treating patients suffering from respiratory insufficiency such as Chronic Obstructive Pulmonary Disease. In example embodiments, a pressure rise or pressure increase may be controlled during a period of patient expiration by implementation of linear, cubic and/or quartic functions that serve as control parameters in a processor that controls a flow generator. One or more of the functions may optionally serve as a control parameter to control the pressure increase during an expiration period and a following decrease during the period of expiration. In some embodiments, such functions may further control a decrease in pressure during a period of patient inspiration, such as a decrease prior to mid-inspiration.
Abstract:
A method of a processor for detecting a presence of Cheyne-Stokes respiration from a respiration signal includes accessing data representative of a respiration signal. Data is assessed to detect apnea and/or hypopnea events. A cycle length histogram is determined based on the events and an incident of Cheyne-Stokes respiration is detected based on the cycle length histogram.
Abstract:
Apparatus and methods provide compliance management tools such as for respiratory pressure therapy. In some versions, a respiratory pressure therapy system may include one or more processors, such as of a data server, configured to communicate with a computing device and/or a respiratory pressure therapy device. The respiratory pressure therapy device may be configured to deliver respiratory pressure therapy to a patient for a session. The computing device may be associated with the patient. The processor(s) may be further configured to compute a therapy quality indicator of the session from usage data relating to the session. The therapy quality indicator may be a number derived from contributions of a plurality of usage variables for the session in the usage data. The processor(s) may be further configured to present, such as by transmitting, the therapy quality indicator to the computing device. The therapy quality indicator may promote patient compliance.