摘要:
We disclose a process for the removal of phosphorous and ammonia from an aqueous stream by contacting the aqueous stream with magnesium and base in a first zone having a first pH, to form an (n−1)th mixed stream and a first portion of struvite; separating the (n−1)th mixed stream from the first portion of struvite; removing at least some struvite from the first portion of struvite; contacting the (n−1)th mixed stream with base in an nth zone, wherein n is an integer incrementing from 2 to nmax, wherein nmax is an integer from 2 to about 5, and wherein the nth zone has an nth pH higher than the (n−1)th pH, to form an nth mixed stream and an nth portion of struvite, except no base is added and the nth pH need not be higher than the (n−1)th pH when n=nmax; separating the nth mixed stream from the nth portion of struvite; returning the nth portion of struvite to the (n−1)th zone; and, if n
摘要:
The present invention provides a method for producing sucralose from a feed stream resulting from the chlorination of a sucrose-6-acylate in a reaction vehicle. The feed stream includes a sucralose-6-acylate, the reaction vehicle, water, and salts. The salts include one or more selected from the group consisting of alkali metal chlorides, alkaline earth metal chlorides and ammonium chloride. The method includes: (i) deacylation of the sucralose-6-acylate by treatment with a base to afford a product stream comprising sucralose; (ii) partial removal of water and, optionally, reaction vehicle from the product stream of (i) in order to cause precipitation of the salts from the product stream; (iii) removal of the precipitated salts from the product stream of (ii); and (iv) isolation of sucralose from the product stream of (iii).
摘要:
The present invention provides a method for producing sucralose from a feed stream resulting from the chlorination of a sucrose-6-acylate in a reaction vehicle. The feed stream includes a sucralose-6-acylate, the reaction vehicle, water, and salts. The salts include one or more selected from the group consisting of alkali metal chlorides, alkaline earth metal chlorides and ammonium chloride. The method includes: (i) deacylation of the sucralose-6-acylate by treatment with a base to afford a product stream comprising sucralose; (ii) partial removal of water and, optionally, reaction vehicle from the product stream of (i) in order to cause precipitation of the salts from the product stream; (iii) removal of the precipitated salts from the product stream of (ii); and (iv) isolation of sucralose from the product stream of (iii).
摘要:
A process including steeping cereal kernels in an aqueous liquid, producing softened cereal; milling the softened cereal, producing a milled cereal comprising germ, protein, starch, and fiber; separating at least some of at least one material selected from the group consisting of germ, starch, and protein from the milled cereal, producing at least one of germ, starch, and a first protein portion, and also producing a first fiber portion that comprises fiber and starch, and a light steep water that comprises protein; separating at least some protein from the light steep water, producing a second protein portion and a process water that comprises protein; converting at least some of the starch in the first fiber portion to saccharides; separating at least some of the saccharides from the first fiber portion, producing saccharides and a second fiber portion that comprises fiber; and burning at least some of the fiber from the second fiber portion, producing a flue gas and a first quantity of energy; wherein the process further comprises at least one step selected from the group consisting of least partially powering at least one previous step with the first quantity of energy; and drying at least one separated material selected from the group consisting of the germ, the starch, the first protein portion, the second protein portion, and the saccharides with the flue gas, producing a dried separated material and a dryer exhaust. In one further embodiment, the process further includes digesting anaerobically the biologically available organic residues from the process water, producing a biogas and a final waste water. In a still further embodiment, the process further includes burning the biogas to produce a second quantity of energy and at least partially powering at least one previous step with the second quantity of energy.
摘要:
Whole grain, such as wheat, barley, rye, and/or rice, can be processed by (a) steeping the grain in an aqueous liquid to produce softened grain, (b) milling the softened grain to produce milled grain, (c) liquefying the milled grain by contacting it with amylase and heating it to a temperature of at least about 50° C., producing a liquefied material, (d) at least partially saccharifying the liquefied material by contacting it with amyloglucosidase at a temperature of at least about 50° C., producing a first saccharified material, and (e) separating fiber and germ from the first saccharified material, producing a screened material that is substantially free of fiber and germ. The process also includes the steps of (f) further saccharifying and fermenting the screened material with a microorganism that produces ethanol, thereby producing a broth that comprises ethanol, soluble protein, and insoluble protein, and (g) separating ethanol from the broth. A protein-rich product can be recovered from the broth that comprises both gluten from the grain and microorganism from the fermenting step.
摘要:
Whole grain, such as wheat, barley, rye, and/or rice, can be processed by (a) steeping the grain or at least partially dehulled grain in an aqueous liquid to produce softened grain, (b) milling the softened grain to produce milled grain, (c) liquefying the milled grain by contacting it with amylase and heating it to a temperature of at least about 50° C., producing a liquefied material, (d) at least partially saccharifying the liquefied material by contacting it with amyloglucosidase at a temperature of at least about 50° C., producing a first saccharified material, and (e) separating fiber and germ from the first saccharified material, producing a screened material that is substantially free of fiber and wheat germ. The process also includes the steps of (f) further saccharifying the screened material by contacting it with amyloglucosidase at a temperature of at least about 50° C., producing a second saccharified material, (g) membrane filtering the second saccharified material, producing a permeate that comprises primarily dextrose and other soluble components and a retentate that comprises insoluble protein, and (h) purifying the permeate by chromatographic separation, producing a purified dextrose stream. The chromatographic separation can also produce a raffinate, and the process can further include the steps of (i) combining the retentate from the membrane filtration and the raffinate from the chromatographic separation to form a fermentation medium, (j) fermenting the fermentation medium aerobically with a microorganism, (k) separating a protein product that comprises insoluble protein and microorganism from the medium, and (l) drying the protein product.
摘要:
A method of inverting sucrose, including (i) determining an initial solids concentration of an aqueous sucrose solution, an initial bed volume of a sucrose inversion resin system, a minimum target inversion percentage, a maximum target inversion percentage, a target maximum hydroxymethylfuran (HMF) concentration, a minimum target pH, or a maximum target pH; (ii) contacting the sucrose inversion resin system with the aqueous sucrose solution under conditions of aqueous solution flow rate and aqueous solution temperature to produce an inverted sucrose solution having an inversion percentage, an HMF concentration, and a pH; (iii) observing an instantaneous inversion percentage, an instantaneous HMF concentration, or an instantaneous pH of the inverted sucrose solution; and, if appropriate; (iv) changing at least one of the aqueous solution flow rate or the aqueous solution temperature to yield a product having a desired inversion percentage, HMF concentration, and/or pH. An apparatus capable of performing the method.
摘要:
We disclose a method of inverting sucrose, including (i) determining an initial solids concentration of an aqueous sucrose solution (solidsi), an initial bed volume (BVi) of a sucrose inversion resin system, a minimum target inversion percentage (invert %min), a maximum target inversion percentage (invert %max), a target maximum hydroxymethylfuran (HMF) concentration (HMFmax), a minimum target pH (pHmin), or a maximum target pH (pHmax); (ii) contacting the sucrose inversion resin system with the aqueous sucrose solution under conditions of aqueous solution flow rate in BVi/hr (ratep) and aqueous solution temperature in ° C. (temperaturep) to produce an inverted sucrose solution having an inversion percentage (invert %product), an HMF concentration (HMFproduct), and a pH (pHproduct); (iii) observing an instantaneous inversion percentage (invert %inst), an instantaneous HMF concentration (HMFinst), or an instantaneous pH (pHinst) of the inverted sucrose solution; and, if invert %inst invert %max, HMFinst>HMFmax, pHinst pHmax; (iv) changing at least one of the aqueous solution flow rate or the aqueous solution temperature such that invert %min≦invert %product≦invert %max, HMFproduct≦HMFmax, or pHmin≦pHproduct≦pHmax. We also disclose a computing apparatus capable of use in performing a method of inverting sucrose.
摘要:
A process for the extraction of sucralose from an aqueous solution containing at least sucralose, other chlorinated saccharides, sodium chloride and dimethylammonium chloride into an organic solvent for sucralose by contacting said organic solvent with said solution to extract sucralose into the organic solvent. The ratio of sodium chloride to dimethylammonium chloride in the aqueous solution is increased prior to or during contact so as to increase the partition coefficient of sucralose into said organic solvent.
摘要:
A process for removing dimethylamine (DMA) before and/or during and/or after deacylation in a reaction vessel of a feed stream comprising a sucralose-6-acylate resulting from the chlorination of a sucrose-6-acylate in the presence of dimethyl formamide (DMF), wherein the deacylation is conducted at a first set of conditions of temperature, pH and pressure, the process comprising: (a) providing a side stream loop from and to the reaction vessel; (b) adjusting the conditions of one or more of temperature, pH, and pressure in the loop, and setting the flow rate through the loop, to remove DMA while minimising carbohydrate degradation.