摘要:
A method of inverting sucrose, including (i) determining an initial solids concentration of an aqueous sucrose solution, an initial bed volume of a sucrose inversion resin system, a minimum target inversion percentage, a maximum target inversion percentage, a target maximum hydroxymethylfuran (HMF) concentration, a minimum target pH, or a maximum target pH; (ii) contacting the sucrose inversion resin system with the aqueous sucrose solution under conditions of aqueous solution flow rate and aqueous solution temperature to produce an inverted sucrose solution having an inversion percentage, an HMF concentration, and a pH; (iii) observing an instantaneous inversion percentage, an instantaneous HMF concentration, or an instantaneous pH of the inverted sucrose solution; and, if appropriate; (iv) changing at least one of the aqueous solution flow rate or the aqueous solution temperature to yield a product having a desired inversion percentage, HMF concentration, and/or pH. An apparatus capable of performing the method.
摘要:
The present invention provides a method for producing sucralose from a feed stream resulting from the chlorination of a sucrose-6-acylate in a reaction vehicle. The feed stream includes a sucralose-6-acylate, the reaction vehicle, water, and salts. The salts include one or more selected from the group consisting of alkali metal chlorides, alkaline earth metal chlorides and ammonium chloride. The method includes: (i) deacylation of the sucralose-6-acylate by treatment with a base to afford a product stream comprising sucralose; (ii) partial removal of water and, optionally, reaction vehicle from the product stream of (i) in order to cause precipitation of the salts from the product stream; (iii) removal of the precipitated salts from the product stream of (ii); and (iv) isolation of sucralose from the product stream of (iii).
摘要:
The present invention provides a method for producing sucralose from a feed stream resulting from the chlorination of a sucrose-6-acylate in a reaction vehicle. The feed stream includes a sucralose-6-acylate, the reaction vehicle, water, and salts. The salts include one or more selected from the group consisting of alkali metal chlorides, alkaline earth metal chlorides and ammonium chloride. The method includes: (i) deacylation of the sucralose-6-acylate by treatment with a base to afford a product stream comprising sucralose; (ii) partial removal of water and, optionally, reaction vehicle from the product stream of (i) in order to cause precipitation of the salts from the product stream; (iii) removal of the precipitated salts from the product stream of (ii); and (iv) isolation of sucralose from the product stream of (iii).
摘要:
We disclose a method of inverting sucrose, including (i) determining an initial solids concentration of an aqueous sucrose solution (solidsi), an initial bed volume (BVi) of a sucrose inversion resin system, a minimum target inversion percentage (invert %min), a maximum target inversion percentage (invert %max), a target maximum hydroxymethylfuran (HMF) concentration (HMFmax), a minimum target pH (pHmin), or a maximum target pH (pHmax); (ii) contacting the sucrose inversion resin system with the aqueous sucrose solution under conditions of aqueous solution flow rate in BVi/hr (ratep) and aqueous solution temperature in ° C. (temperaturep) to produce an inverted sucrose solution having an inversion percentage (invert %product), an HMF concentration (HMFproduct), and a pH (pHproduct); (iii) observing an instantaneous inversion percentage (invert %inst), an instantaneous HMF concentration (HMFinst), or an instantaneous pH (pHinst) of the inverted sucrose solution; and, if invert %inst invert %max, HMFinst>HMFmax, pHinst pHmax; (iv) changing at least one of the aqueous solution flow rate or the aqueous solution temperature such that invert %min≦invert %product≦invert %max, HMFproduct≦HMFmax, or pHmin≦pHproduct≦pHmax. We also disclose a computing apparatus capable of use in performing a method of inverting sucrose.
摘要:
A process for the extraction of sucralose from an aqueous solution containing at least sucralose, other chlorinated saccharides, sodium chloride and dimethylammonium chloride into an organic solvent for sucralose by contacting said organic solvent with said solution to extract sucralose into the organic solvent. The ratio of sodium chloride to dimethylammonium chloride in the aqueous solution is increased prior to or during contact so as to increase the partition coefficient of sucralose into said organic solvent.
摘要:
We disclose a process for the removal of phosphorous and ammonia from an aqueous stream by contacting the aqueous stream with magnesium and base in a first zone having a first pH, to form an (n−1)th mixed stream and a first portion of struvite; separating the (n−1)th mixed stream from the first portion of struvite; removing at least some struvite from the first portion of struvite; contacting the (n−1)th mixed stream with base in an nth zone, wherein n is an integer incrementing from 2 to nmax, wherein nmax is an integer from 2 to about 5, and wherein the nth zone has an nth pH higher than the (n−1)th pH, to form an nth mixed stream and an nth portion of struvite, except no base is added and the nth pH need not be higher than the (n−1)th pH when n=nmax; separating the nth mixed stream from the nth portion of struvite; returning the nth portion of struvite to the (n−1)th zone; and, if n
摘要:
A process for removing dimethylamine (DMA) before and/or during and/or after deacylation in a reaction vessel of a feed stream comprising a sucralose-6-acylate resulting from the chlorination of a sucrose-6-acylate in the presence of dimethyl formamide (DMF), wherein the deacylation is conducted at a first set of conditions of temperature, pH and pressure, the process comprising: (a) providing a side stream loop from and to the reaction vessel; (b) adjusting the conditions of one or more of temperature, pH, and pressure in the loop, and setting the flow rate through the loop, to remove DMA while minimising carbohydrate degradation.
摘要:
A method of inverting sucrose, including (i) determining an initial solids concentration of an aqueous sucrose solution, an initial bed volume of a sucrose inversion resin system, a minimum target inversion percentage, a maximum target inversion percentage, a target maximum hydroxymethylfuran (HMF) concentration, a minimum target pH, or a maximum target pH; (ii) contacting the sucrose inversion resin system with the aqueous sucrose solution under conditions of aqueous solution flow rate and aqueous solution temperature to produce an inverted sucrose solution having an inversion percentage, an HMF concentration, and a pH; (iii) observing an instantaneous inversion percentage, an instantaneous HMF concentration, or an instantaneous pH of the inverted sucrose solution; and, if appropriate; (iv) changing at least one of the aqueous solution flow rate or the aqueous solution temperature to yield a product having a desired inversion percentage, HMF concentration, and/or pH. An apparatus capable of performing the method.
摘要:
We disclose a method of extracting an alcohol or furan from a predominantly liquid stream comprising the alcohol or furan, comprising removing cations from the predominantly liquid stream comprising the alcohol or furan, using a cation-exchange resin; removing anions from the predominantly liquid stream comprising the alcohol or furan, using an anion-exchange resin; and recovering alcohol or furan from the predominantly liquid stream comprising the alcohol or furan, using either a vapor permeation membrane, a perevaporation process, or both.
摘要:
A process for removing dimethylamine (DMA) before and/or during and/or after deacylation in a reaction vessel of a feed stream comprising a sucralose-6-acylate resulting from the chlorination of a sucrose-6-acylate in the presence of dimethyl formamide (DMF), wherein the deacylation is conducted at a first set of conditions of temperature, pH and pressure, the process comprising: (a) providing a side stream loop from and to the reaction vessel; (b) adjusting the conditions of one or more of temperature, pH, and pressure in the loop, and setting the flow rate through the loop, to remove DMA while minimising carbohydrate degradation.