Abstract:
The invention relates to methods and compositions for removing a dissociated species from a fluid medium solution during and after it has detached from a solid-phase immersed in said medium, thereby allowing the concentration of free species to remain close to zero, and for improving the signal to noise ratio in assays. This is achieved by employing a substrate, such as a scavenging solid-phase, having an attached binding partner or partners (“scavenger”) for the specifically binding species and which is present during storage. This substrate may also contain regions for binding signal generating components attached to the solid-phase. This substrate binds any free species bleeding off the solid phase, increasing the reliability and sensitivity of assays. A subset of the substrates in the invention additionally forms cross-linked networks of solid-phase particles that further increase the sensitivity of assays.
Abstract:
The invention relates to methods and compositions for removing a dissociated species from a fluid medium solution during and after it has detached from a solid-phase immersed in said medium, thereby allowing the concentration of free species to remain close to zero, and for improving the signal to noise ratio in assays. This is achieved by employing a substrate, such as a scavenging solid-phase, having an attached binding partner or partners (“scavenger”) for the specifically binding species and which is present during storage. This substrate may also contain regions for binding signal generating components attached to the solid-phase. This substrate binds any free species bleeding off the solid phase, increasing the reliability and sensitivity of assays. A subset of the substrates in the invention additionally forms cross-linked networks of solid-phase particles that further increase the sensitivity of assays.
Abstract:
Compounds include carbamate derivatives of vitamin D including vitamin D3and vitamin D2. The compounds are useful in methods and kits for determining the presence and/or amount of vitamin D including vitamin D analogs and metabolites thereof in a sample suspected of containing the same.
Abstract:
Methods of enhancing signal ratio between calibrators in an assay for an analyte include conducting an assay for the analyte with zero concentration of analyte in a first calibrator to determine a first signal level. The reagents employed in the assay comprise an antibody reagent comprising an antibody for the analyte wherein a hinge region of the antibody is conjugated to a moiety. The assay for the analyte is also conducted with a second concentration of analyte in a second calibrator to determine a second signal level wherein the second analyte concentration is greater than zero and wherein the reagents employed in the assay comprise the antibody reagent. A ratio of the first signal level to the second signal level is determined and evaluated.
Abstract:
Methods and reagents are disclosed for conducting assays. Embodiments of the present methods and reagents are concerned with chemiluminescent reagents for determining the presence and/or amount of an analyte in a sample suspected of containing the analyte. The reagent is non-particulate and comprises a binding partner for the analyte and a chemiluminescent composition comprising an olefinic compound and a metal chelate. In embodiments of an assay, a combination is provided that comprises a sample suspected of containing the analyte, a chemiluminescent reagent as described above and a sensitizer reagent capable of generating singlet oxygen. The combination is subjected to conditions for binding of the analyte to the binding partner for the analyte. The sensitizer is activated and the amount of luminescence generated by the chemiluminescent composition is detected wherein the amount of luminescence is related to the amount of the analyte in the sample.
Abstract:
Compounds include carbamate derivatives of vitamin D including vitamin D3 and vitamin D2. The compounds are useful in methods and kits for determining the presence and/or amount of vitamin D including vitamin D analogs and metabolites thereof in a sample suspected of containing the same.
Abstract:
A correction device for a charged particle beam device for decreasing, correcting or inverting (that is adjusting) the spherical aberration of a charged particle beam is described. The correction principle is similar to that of common multipole-Correctors. But unlike common devices of that kind this new correction device gets along entirely with plane apertures having specially shaped holes in order to supply the multipoles required for correction and is therefore predestined for miniaturization and the use in multi column devices.
Abstract:
Methods and reagents are disclosed for conducting assays. Embodiments of the present methods and reagents are concerned with chemiluminescent reagents for determining the presence and/or amount of an analyte in a sample suspected of containing the analyte. The reagent is non-particulate and comprises a binding partner for the analyte and a chemiluminescent composition comprising an olefinic compound and a metal chelate. In embodiments of an assay, a combination is provided that comprises a sample suspected of containing the analyte, a chemiluminescent reagent as described above and a sensitizer reagent capable of generating singlet oxygen. The combination is subjected to conditions for binding of the analyte to the binding partner for the analyte. The sensitizer is activated and the amount of luminescence generated by the chemiluminescent composition is detected wherein the amount of luminescence is related to the amount of the analyte in the sample.
Abstract:
The invention relates to methods and compositions for removing a dissociated species from a fluid medium solution during and after it has detached from a solid-phase immersed in said medium, thereby allowing the concentration of free species to remain close to zero, and for improving the signal to noise ratio in assays. This is achieved by employing a substrate, such as a scavenging solid-phase, having an attached binding partner or partners (“scavenger”) for the specifically binding species and which is present during storage. This substrate may also contain regions for binding signal generating components attached to the solid-phase. This substrate binds any free species bleeding off the solid phase, increasing the reliability and sensitivity of assays. A subset of the substrates in the invention additionally forms cross-linked networks of solid-phase particles that further increase the sensitivity of assays.
Abstract:
An electron-optical lens arrangement with an axis that can be substantially displaced, and useful for electron lithography, includes a cylinder lens and a quadrupole field. The plane of symmetry of the quadrupole field extends in the mid-plane of the gap pertaining to the cylinder lens. The focussing level of the quadrupole is oriented in the direction of the gap. The amount of the focussing refractive power belonging to the cylinder lens is twice as high as the amount of the quadrupole. A deflection system for the charged particles is connected upstream in the level of the gap pertaining to the cylinder lens and several electrodes or pole shoes, which generate a quadrupole field are provided in the direction of the gap pertaining to the cylinder lens. The electrodes or pole shoes can be individually and, preferably, successively excited and the quadrupole field can be displaced according to the deflection of the particle beam, so that the particle beam impinges upon the area of the quadrupole field. A holding device is provided for an object, such as a wafer, and is arranged vertically in relation to the optical axis and can be displaced in relation to the direction of the gap pertaining to the cylinder lens.