Abstract:
A hydroprocessing catalyst composition that comprises a support material and a selenium component and which support material further includes at least one hydrogenation metal component. The hydroprocessing catalyst is prepared by incorporating a selenium component into a support particle and, after calcination thereof, incorporating at least one hydrogenation metal component into the selenium-containing support. The metal-incorporated, selenium-containing support is calcined to provide the hydroprocessing catalyst composition.
Abstract:
A highly active hydroprocessing catalyst that comprises an inorganic oxide support particle having been impregnated with a metals-impregnation solution comprising a complexing agent and a hydrogenation metal that is further incorporated with an organic additive blend.
Abstract:
A hydroprocessing catalyst composition that comprises a support material and a selenium component and which support material further includes at least one hydrogenation metal component. The hydroprocessing catalyst is prepared by incorporating a selenium component into a support particle and, after calcination thereof, incorporating at least one hydrogenation metal component into the selenium-containing support. The metal-incorporated, selenium-containing support is calcined to provide the hydroprocessing catalyst composition.
Abstract:
Disclosed is a composition useful in the hydrolysis of sulfur compounds that are contained in a gas stream. The composition comprises a calcined co-mulled mixture of psuedoboehmite, a cobalt compound, and a molybdenum compound such that the composition comprises gamma-alumina, at least 7.5 wt. % molybdenum, and at least 2.75 wt. % cobalt. The composition is made by forming into an agglomerate a co-mulled mixture pseudoboehmite, a cobalt component, and a molybdenum component followed by drying and calcining the agglomerate to provide a catalyst composition comprising gamma-alumina, at least 7.5 wt. % molybdenum, and at least 2.75 wt. % cobalt.
Abstract:
A highly active hydroprocessing catalyst that comprises a doped support having been impregnated with a metal-impregnation solution, comprising a complexing agent and a hydrogenation metal, and filled with an organic additive blend. The catalyst is made by providing a doped support particle followed by impregnating the doped support particle with a metal impregnation solution that contains both a hydrogenation metal component and a complexing agent component to provide a metal-impregnated doped support particle. The metal-impregnated doped support particle is dried, but not calcined, and impregnated with an organic additive blend component.
Abstract:
A low-pressure process for hydrodenitrogenation and hydrodesulfurization of a gas oil feedstock. The process uses a multi-bed, stacked-bed reactor system. The first and third beds of the multi-bed, stacked-bed reactor system include catalysts that comprise cobalt and molybdenum supported on alumina. The middle, second bed, includes a catalyst comprising nickel and molybdenum supported on alumina that preferably includes an additive. The stacked bed arrangement with the use of the specific catalysts provides for the low-pressure operation and significantly improved HDN and HDS activity with relatively insignificant differences in hydrogen consumption.
Abstract:
Presented is a catalyst composition having exceptional properties for converting sulfur, sulfur compounds, and carbon monoxide contained in gas streams by catalyzed hydrolysis, hydrogenation and water-gas shift reactions. The catalyst comprises underbedded molybdenum and cobalt with an overlayer of molybdenum and cobalt. These metals are present in the catalyst within certain concentration ranges and relative weight ratios. The underbedded metals are present in the catalyst within a specified range relative to the overlayer and total metals. The underbedded metals are formed by co-mulling an inorganic oxide with the catalytically active metals of molybdenum and cobalt. The co-mulled mixture is calcined and then impregnated with overlaid molybdenum and cobalt.
Abstract:
Disclosed is a composition useful in the hydrolysis of sulfur compounds that are contained in a gas stream. The composition comprises a calcined co-mulled mixture of psuedoboehmite, a cobalt compound, and a molybdenum compound such that the composition comprises gamma-alumina, at least 7.5 wt. % molybdenum, and at least 2.75 wt. % cobalt. The composition is made by forming into an agglomerate a co-mulled mixture pseudoboehmite, a cobalt component, and a molybdenum component followed by drying and calcining the agglomerate to provide a catalyst composition comprising gamma-alumina, at least 7.5 wt. % molybdenum, and at least 2.75 wt. % cobalt.
Abstract:
A process and catalyst that provides for the upgrading of a high endpoint gas oil feedstock that contains significant concentrations of organic sulfur compound and organic nitrogen compounds. Included among the sulfur compounds are the dimethyl-dibenzothiophenes and derivative thereof. The catalyst of the process is an additive impregnated composition or a derivative thereof that further comprises cobalt and molybdenum. The process provides for the upgrading the high endpoint gas oil feedstock by significantly reducing the difficult to remove thiophene and nitrogen compounds and the process does this with a significantly reduced hydrogen consumption relative to processes using comparative catalysts.