Abstract:
A circuit generates a number of oscillations. The circuit includes a first branch with at least one delay line introducing symmetrical delays on rising edges and on falling edges and at least one asymmetrical delay element introducing different delays on rising edges and on falling edges. The circuit further includes a second branch looped back on the first branch and including at least one delay line introducing symmetrical delays on rising edges and on falling edges.
Abstract:
A circuit generates a number of oscillations. The circuit includes a first branch with at least one delay line introducing symmetrical delays on rising edges and on falling edges and at least one asymmetrical delay element introducing different delays on rising edges and on falling edges. The circuit further includes a second branch looped back on the first branch and including at least one delay line introducing symmetrical delays on rising edges and on falling edges.
Abstract:
A pulse counting circuit receives pulses supplied by a source circuit having at least two inverted pulse signal supply terminals. The circuit includes a first counter to count pulses of a first pulse signal and supply a first count and a second counter to count pulses of a second pulse signal and supply a second count. A selection circuit selects one of the first and second counts.
Abstract:
A thermally deformable assembly is formed in an integrated-circuit metallization level. The physical behavior of the metal forming the assembly brings the assembly into contact with a stop-forming body when subjected to a temperature change caused by a current flow. A natural rollback to the initial configuration in which the assembly is a certain distance away from the body is prevented. The state or configuration of the assembly is determined by a capacitive reader.
Abstract:
The present disclosure relates to a circuit for testing a random number generator adapted to delivering a series of random bits and comprising at least one test unit configured to detect a defect in the series of random bits, said test circuit being adapted to verifying whether, after the detection of a first defect by the test unit, the number of random bits, generated by the random number generator without the detection of a second defect by said unit test, is smaller than a first threshold.
Abstract:
A circuit includes a random oscillation number generator (RONG) configured to generate first and second pulse signals at first and second RONG outputs. A first counter is coupled to the first RONG output and generates a first count at a first counter output. A second counter is coupled to the second RONG output and generates a second count at a second counter output. A selection circuit is coupled to the first and second counter outputs and to the first and second RONG outputs. A first pulse shaper is connected between the first RONG output and the first counter, and a second pulse shaper is connected between the second RONG output and the second counter.
Abstract:
A pulse counting circuit receives pulses supplied by a source circuit having at least two inverted pulse signal supply terminals. The circuit includes a first counter to count pulses of a first pulse signal and supply a first count and a second counter to count pulses of a second pulse signal and supply a second count. A selection circuit selects one of the first and second counts.
Abstract:
A method for monitoring the execution of a program code by a monitoring program code may include storing instructions of the program code and instructions for monitoring the program code in the same program memory. Each instruction to be monitored and the associated monitoring instructions may be simultaneously extracted from the program memory, and the instruction to be monitored and the monitoring instructions may be executed.
Abstract:
A logic two-to-one multiplexer includes: two input terminals; one output terminal; a control terminal. Four series-connected two-to-one multiplexers are connected such that a first multiplexer has its inputs connected to the input terminals, a last multiplexer has its output connected to the output terminal, and the other multiplexers have their respective inputs interconnected to the output of the previous multiplexer in the series association. Half of the multiplexers are controlled in reverse with respect to the other half of the multiplexers.
Abstract:
An electronic device includes: a non-volatile memory configured to store data including encrypted data; and a digital circuit. The digital circuit includes: a microprocessor configured to access the non-volatile memory and an internal memory; and a decryption circuit arranged on an interconnect network identifying an internal data path for exchanging the data between the non-volatile memory and the microprocessor, and connected to a memory controller of the non-volatile memory for receiving blocks of data from the non-volatile memory, the decryption circuit being configured to: perform a decryption on the fly of blocks of the data read from the non-volatile memory to obtain read decrypted data; generate first decryption masks corresponding to first blocks of data being read from the non-volatile memory at a given read address; and generate second decryption masks corresponding to second blocks of data to be read from the non-volatile memory at a next estimated read address.