Abstract:
An address decoder selectively applies to word lines of a memory array individual signals of variable polarity, negative or positive, the value of which varies according to a word line address applied to the decoder. The decoder comprises a group decoder delivering signals for selecting a group of word lines of variable polarity, at least one subgroup decoder delivering signals for selecting a subgroup of word lines of variable polarity, and word line drivers each comprising means for multiplexing the group and subgroup selection signals, for selecting and selectively applying one of these signals to a word line. Advantages: reduction in the size of the terminating elements of the decoders in relation with the reduction of the technological pitch in Flash memories.
Abstract:
A FLASH memory erasable by page includes a flash memory array containing a plurality of floating gate transistors arranged in pages, and a checking circuit for checking the threshold voltages of the floating gate transistors. Programmed transistors that have a threshold voltage less than a given threshold are reprogrammed. The checking circuit includes a non-volatile counter formed by at least one row of floating gate transistors, a reading circuit for reading the address of a page to be checked in the counter, and an incrementing circuit for incrementing the counter after a page has been checked.
Abstract:
An electrically erasable and programmable memory includes memory cells and a verify-program device. The memory also comprises an erase verify device arranged for supplying an erase verify signal having a determined value when a datum read in a memory cell during a first verify-program cycle has an erase logic value. Application particularly to performing a blank verify test in serial input/output Flash memories.
Abstract:
A FLASH memory erasable by page includes a flash memory array containing a plurality of floating gate transistors arranged in pages, and a checking circuit for checking the threshold voltages of the floating gate transistors. Programmed transistors that have a threshold voltage less than a given threshold are reprogrammed. The checking circuit includes a non-volatile counter formed by at least one row of floating gate transistors, a reading circuit for reading the address of a page to be checked in the counter, and an incrementing circuit for incrementing the counter after a page has been checked.
Abstract:
An integrated circuit memory includes a FLASH memory including a circuit for recording a word presented on its input without the possibility of recording simultaneously several words in parallel. The integrated circuit memory may include a buffer memory with a sufficient capacity to store a plurality of words, the output of which is coupled to the input of the FLASH memory. A circuit is also included for recording into the buffer memory a series of words to be recorded into the FLASH memory and recording into the FLASH memory the words first recorded into the buffer memory.
Abstract:
The present invention relates to a method for controlling and for refreshing memory cells in an electrically erasable and programmable memory comprising a memory array organized in sectors, each sector comprising memory cells linked to bit lines and to word lines. The method comprises controlling and refreshing memory cells of pages of the memory array the address of which is indicated by a control and refresh counter comprising data forming tokens usable once. According to the present invention, a control and refresh counter is integrated into each sector of the memory and comprises memory cells linked to the bit lines of the sector. A counter of a sector is erased after reaching a maximum counting value that is chosen so that, when this maximum counting value is reached, memory cells of the counter have undergone a number of electrical stress cycles that is at the most equal to a determined number. Application to Flash memories.
Abstract:
A column register of an integrated circuit memory, notably in EEPROM technology, is utilized in a method of writing a data word of 2P bits in the memory, where p is a non-zero whole number. The method includes the following steps: 1) erasing all the cells of the word; 2) loading 2q data in q high-voltage latches (HV1, HV3, HV5, HV7), and loading 2pnull2q other data in the 2pnull2q llow-voltage latches (LV0, LV2, LV4, LV6); and 3) programming 2q cells of the memory (M0, M2, M4, M6) as a function of the data memorized in the 2q high-voltage latches; as well as repeating 2pnullqnull1 times the following steps: 4) loading, in the 2q high-voltage latches, of 2q other data that were loaded in the 2q low-voltage latches at step 2); and 5) programming 2q other cells of the memory (M1, M3, M5, M7) as a function of the data memorized in the 2q high-voltage latches.
Abstract:
A serial input/output memory is able to read data in the memory upon reception of a partial read address in which there are N least significant bits lacking to form a complete address. The read-ahead step includes: simultaneously reading the P first bits of M words of the memory having the same partial address; when the received address is complete, selecting the P first bits of the word designated by the complete address and delivering these bits at the serial output of the memory; reading P following bits of the word designated by the complete address during the delivery of P previous bits and delivering these bits at the serial output of the memory when the P previous bits are delivered.