Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A fractional Resource Block (RB) allocation method which enables resource allocation in a unit smaller than RB to improve the capacity of Voice over Internet Protocol (VoIP) in a Long Term Evolution (LTE) system is provided. The method includes generating modulation symbols streams by performing channel coding and modulation on transport blocks corresponding to first and second data to be transmitted to respective users, multiplexing the modulation symbols stream alternately in unit of two continuous modulation symbols, and transmitting the multiplexed modulation symbol stream as mapped to corresponding resource. A resource arrangement method allows different users to share the same resource without using a Space Domain Multiple Access (SDMA) and indicates fractional RB allocation.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A method and apparatus are provided for transmitting Uplink Control Information (UCI) on a data channel in a multi-carrier wireless communication system. The method includes channel-coding a UCI with reference to a number of UCI bits available; dividing the channel coded UCI bits into a number of Physical Uplink Shared Channels (PUSCHs); and transmitting the UCI multiplexed with data on the individual PUSCHs.
Abstract:
A plasma etching apparatus may include a first source electrode, a first bias electrode, and a second bias electrode configured to generate a plasma by supplying energy to a process gas injected into a chamber; and a controller. The controller may be configured to supply a first high-frequency RF power, a first low-frequency RF power, and a second low-frequency RF power to the chamber during a first period from a first time to a second time; ramp down and turn off the first high-frequency RF power to the chamber during a second period from the second time to a third time; and ramp down and turn off the first low-frequency RF power to the chamber during a third period from the second time to a fourth time different from the third time. The third period may be smaller than ½ of the first period and greater than the second period.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
In a wireless communication system, a control channel is required in order to use limited resources effectively. However, the control channel resource is part of the system overhead, and thus reduces the data channel resource used for data transmission. In the long term evolution (LTE) system based on OFDM, one sub frame the consists of fourteen OFDM symbols wherein a maximum of three OFDM symbols are used for the control channel resource and remaining eleven OFDM symbols are used for the data channel resource. Therefore, the quantity of energy that can be transmitted for the control channel resource is extremely limited compared to the data channel resource. For this reason, the coverage of the control channel becomes less than that of the data channel, and even if a user can successfully receive the data channel, reception failure of a control channel sometimes results in failure of data recovery. In the present invention, in order to expand the coverage of the control channel to at least the coverage of the data channel, the time resource of the transmission resource wherein the control channel is transmitted is expanded and allocated for sending and receiving the control channel. By way of methods for extending the time resource are provided a method wherein a plurality of sub frames are used to transmit one control channel, and a method wherein a part of a data channel is used for the control channel.
Abstract:
A method of transmitting channel state information. The method includes receiving, from a base station, channel measurement information comprising a plurality of antenna ports to be measured for a serving cell; measuring signals related to the plurality of antenna ports based on the channel measurement information; transmitting reference signal received power (RSRP) information for the plurality of antenna ports based on the measured signals; receiving, from the base station, in response to transmission of the RSRP information, channel state information (CSI) report instruction information for a candidate of a distributed antenna port set including at least one antenna port; measuring a channel state of the at least one antenna port in the candidate; and transmitting the measured channel state to the base station, wherein the candidate of the distributed antenna port set among the plurality of antenna ports is determined based on the RSRP information by the base station.
Abstract:
Methods and apparatuses are provided for reporting power headroom of a user equipment (UE). It is determined whether a simultaneous physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) transmission is configured. First power headroom information and second power headroom information are, if the simultaneous PUCCH and PUSCH transmission is configured. The first power headroom information and the second power headroom information are simultaneously transmitted to a base station. The first power headroom information is obtained by subtracting a PUSCH transmit power from a maximum UE transmit power in a subframe, and the second power headroom information is obtained by subtracting a PUCCH transmit power and the PUSCH transmit power from the maximum UE transmit power in the subframe.