Abstract:
In a method of operating a memory device, a command and a first address from a memory controller are received. A read code word including a first set of data corresponding to the first address, a second set of data corresponding to a second address and a read parity data is read from a memory cell array of the memory device. Corrected data are generated by operating error checking and correction (ECC) using an ECC circuit based on the read cord word.
Abstract:
A device, system, and/or method includes an internal circuit configured to perform at least one function, an input-output terminal set and a repair circuit. The input-output terminal set includes a plurality of normal input-output terminals connected to an external device via a plurality of normal signal paths and at least one repair input-output terminal selectively connected to the external device via at least one repair signal path. The repair circuit repairs at least one failed signal path included in the normal signal paths based on a mode signal and fail information signal, where the mode signal represents whether to use the repair signal path and the fail information signal represents fail information on the normal signal paths. Using the repair circuit, various systems adopting different repair schemes may be repaired and cost of designing and manufacturing the various systems may be reduced.
Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
Abstract:
A device, system, and/or method includes an internal circuit configured to perform at least one function, an input-output terminal set and a repair circuit. The input-output terminal set includes a plurality of normal input-output terminals connected to an external device via a plurality of normal signal paths and at least one repair input-output terminal selectively connected to the external device via at least one repair signal path. The repair circuit repairs at least one failed signal path included in the normal signal paths based on a mode signal and fail information signal, where the mode signal represents whether to use the repair signal path and the fail information signal represents fail information on the normal signal paths. Using the repair circuit, various systems adopting different repair schemes may be repaired and cost of designing and manufacturing the various systems may be reduced.
Abstract:
A semiconductor memory device which includes a memory cell array, an error injection register set, a data input buffer, a write data generator, and control logic. The error injection register set stores an error bit set, including at least one error bit, based on a first command. The error bit set is associated with a data set to be written in the memory cell array. The data input buffer stores the data set to be written in the memory cell array based on a second command. The write data generator generates a write data set to be written in the memory cell array based on the data set and the error bit set. The control logic controls the error injection register set and the data input buffer.
Abstract:
A repair circuit includes first and second fuse circuits, a determination circuit and an output circuit. The first fuse circuit includes a first fuse and is configured to generate a first master signal indicating whether the first fuse has been programmed. The second fuse circuit includes second fuses and is configured to generate a first address indicating whether each of the second fuses has been programmed. The determination circuit is configured to generate a detection signal based on the first master signal and the first address. The detection signal indicates whether a negative program operation has been performed on the second fuse circuit. The output circuit is configured to generate a second master signal based on the first master signal and the detection signal and generate a repair address corresponding to a defective input address based on the first address and the detection signal.
Abstract:
Semiconductor memory device includes a memory cell array and an interface circuit including an ECC engine. The memory cell array includes a normal cell region and a parity cell region including a first sub parity region and a second sub parity region. The interface circuit receives main data and sub data comprising external parity or a data mask signal, generates a flag signal based on mask bits of the data mask signal, performs ECC encoding operation on the main data in response to an operation mode and the flag signal, stores the main data in the normal cell region, stores either the external parity or the flag signal in the second sub parity region in response to the operation mode, performs an ECC decoding operation on the main data read from the normal cell region in response to the operation mode and the flag signal.
Abstract:
A device, system, and/or method includes an internal circuit configured to perform at least one function, an input-output terminal set and a repair circuit. The input-output terminal set includes a plurality of normal input-output terminals connected to an external device via a plurality of normal signal paths and at least one repair input-output terminal selectively connected to the external device via at least one repair signal path. The repair circuit repairs at least one failed signal path included in the normal signal paths based on a mode signal and fail information signal, where the mode signal represents whether to use the repair signal path and the fail information signal represents fail information on the normal signal paths. Using the repair circuit, various systems adopting different repair schemes may be repaired and cost of designing and manufacturing the various systems may be reduced.
Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
Abstract:
A memory device may include a pre-charge control circuit, an active control circuit, and a driver circuit. The pre-charge control circuit may be configured to receive an active command after receiving a pre-charge command for a first bank, determine whether or not a pre-charge operation for the first bank has ended when receiving the active command, and generate an active instruction signal according to a result of the determination. The active control circuit may be configured to generate an active control signal for an active operation according to the active instruction signal. The driver circuit may be configured to control an active operation according to the active control signal.