Abstract:
A method of designing a layout of an integrated chip (IC) includes designing a first layout by place and route a plurality of standard cells that define the IC, and generating a second layout by modifying the first layout during a mask data preparation process related to the first layout, wherein the second layout is generated by connecting first and second patterns from among first layer patterns that correspond to a first layer of the first layout, such that the number of masks necessary for forming the first layer patterns is reduced.
Abstract:
An integrated circuit (IC) may include at least one cell including a plurality of conductive lines that extend in a first direction and are in parallel to each other in a second direction that is perpendicular to the first direction, first contacts respectively disposed at two sides of at least one conductive line from among the plurality of conductive lines, and a second contact disposed on the at least one conductive line and the first contacts and forming a single node by being electrically connected to the at least one conductive line and the first contacts.
Abstract:
An integrated circuit (IC) may include at least one cell including a plurality of conductive lines that extend in a first direction and are in parallel to each other in a second direction that is perpendicular to the first direction, first contacts respectively disposed at two sides of at least one conductive line from among the plurality of conductive lines, and a second contact disposed on the at least one conductive line and the first contacts and forming a single node by being electrically connected to the at least one conductive line and the first contacts.
Abstract:
A method of designing a layout of an integrated chip (IC) includes designing a first layout by place and route a plurality of standard cells that define the IC, and generating a second layout by modifying the first layout during a mask data preparation process related to the first layout, wherein the second layout is generated by connecting first and second patterns from among first layer patterns that correspond to a first layer of the first layout, such that the number of masks necessary for forming the first layer patterns is reduced.
Abstract:
A semiconductor device with fin capacitors is disclosed. The device includes a substrate including a first region and a second region; first and second active fins at the first and second regions, respectively, of the substrate; a device isolation layer in a first trench between the first active fins; first and second gate electrodes that cross the first and second active fins, respectively; a first dielectric layer between the first active fins and the first gate electrode to extend along the first gate electrode, and a second dielectric layer between the second active fins and the second gate electrode to extend along the second gate electrode. The first dielectric layer is spaced apart from a bottom surface of the first trench by the device isolation layer between the bottom surface of the first trench and the first dielectric layer. The second dielectric layer is in direct contact with a bottom surface of a second trench between the second active fins.
Abstract:
An integrated circuit (IC) may include at least one cell including a plurality of conductive lines that extend in a first direction and are in parallel to each other in a second direction that is perpendicular to the first direction, first contacts respectively disposed at two sides of at least one conductive line from among the plurality of conductive lines, and a second contact disposed on the at least one conductive line and the first contacts and forming a single node by being electrically connected to the at least one conductive line and the first contacts.
Abstract:
A method of designing a semiconductor integrated circuit (IC) is provided as follows. A standard cell library is generated. The standard cell library includes characteristic information for a plurality of standard cells. The characteristic information includes a characteristic of each standard cell. A characteristic change region is detected. The characteristic change region includes at least one of the plurality of standard cells by comparing characteristics of standard cells to be placed adjacent to the characteristic change region, based on the standard cell library. A characteristic of the at least one standard cell included in the detected characteristic change region is changed to one of the characteristics of the standard cells to be placed adjacent to the characteristic change region to update the standard cell library. A plurality of standard cells of the updated standard cell library is placed.