Abstract:
An embodiment includes an integrated circuit comprising a standard cell, the standard cell comprising: first and second active regions having different conductivity types and extending in a first direction; first, second, and third conductive lines extending over the first and second active regions in a second direction substantially perpendicular to the first direction, and disposed parallel to each other; and a cutting layer extending in the first direction between the first and second active regions and separating the first conductive line into a first upper conductive line and a first lower conductive line, the second conductive line into a second upper conductive line and a second lower conductive line, and the third conductive line into a third upper conductive line and a third lower conductive line; wherein: the first upper conductive line and the third lower conductive line are electrically connected together; and the second upper conductive line and the second lower conductive line are electrically connected together.
Abstract:
An integrated circuit (IC) may include at least one cell including a plurality of conductive lines that extend in a first direction and are in parallel to each other in a second direction that is perpendicular to the first direction, first contacts respectively disposed at two sides of at least one conductive line from among the plurality of conductive lines, and a second contact disposed on the at least one conductive line and the first contacts and forming a single node by being electrically connected to the at least one conductive line and the first contacts.
Abstract:
An integrated circuit having a vertical transistor includes first through fourth gate lines extending in a first direction and sequentially arranged in parallel with each other, a first top active region over the first through third gate lines and insulated from the second gate line, and a second top active region. The first top active region forms first and third transistors with the first and third gate lines respectively. The second top active region is over the second through fourth gate lines and insulated from the third gate line. The second top active region forms second and fourth transistors with the second and fourth gate lines respectively.
Abstract:
An integrated circuit having a vertical transistor includes first through fourth gate lines extending in a first direction and sequentially arranged in parallel with each other, a first top active region over the first through third gate lines and insulated from the second gate line, and a second top active region. The first top active region forms first and third transistors with the first and third gate lines respectively. The second top active region is over the second through fourth gate lines and insulated from the third gate line. The second top active region forms second and fourth transistors with the second and fourth gate lines respectively.
Abstract:
A method of designing a layout of an integrated chip (IC) includes designing a first layout by place and route a plurality of standard cells that define the IC, and generating a second layout by modifying the first layout during a mask data preparation process related to the first layout, wherein the second layout is generated by connecting first and second patterns from among first layer patterns that correspond to a first layer of the first layout, such that the number of masks necessary for forming the first layer patterns is reduced.
Abstract:
Provided is an integrated circuit including: at least one active region extending in a first row in a first direction; at least one active region extending in a second row in the first direction; and a multiple height cell including the at least one active region in the first row, the at least one active region in the second row, at least one gate line extending in a second direction crossing the first direction, wherein each of the at least one active region in the first row and the at least one active region in the second row is terminated by a diffusion break.
Abstract:
A method of designing a layout of an integrated chip (IC) includes designing a first layout by place and route a plurality of standard cells that define the IC, and generating a second layout by modifying the first layout during a mask data preparation process related to the first layout, wherein the second layout is generated by connecting first and second patterns from among first layer patterns that correspond to a first layer of the first layout, such that the number of masks necessary for forming the first layer patterns is reduced.
Abstract:
Provided are a fin transistor including a plurality of fins and a semiconductor integrated circuit including a plurality of fin transistors. A width of at least one fin of the plurality of fins is different from widths of the other fins, and each width of the plurality of fins is individually determined based on the electrical characteristics of the fin transistor.
Abstract:
A standard cell library and a method of using the same may include information regarding a plurality of standard cells stored on a non-transitory computer-readable storage medium, wherein at least one of the plurality of standard cells includes a pin through which an input signal or an output signal of the at least one standard cell passes and including first and second regions perpendicular to a stack direction. When the via is disposed in the pin, the second region can provide a resistance value of the via smaller than that of the first region. The standard cell library may further include marker information corresponding to the second region.
Abstract:
Provided is an integrated circuit including: at least one active region extending in a first row in a first direction; at least one active region extending in a second row in the first direction; and a multiple height cell including the at least one active region in the first row, the at least one active region in the second row, at least one gate line extending in a second direction crossing the first direction, wherein each of the at least one active region in the first row and the at least one active region in the second row is terminated by a diffusion break.