Abstract:
According to one embodiment of the present invention, suggested art a method for reporting a power headroom report (hereinafter, PHR) of a terminal and an apparatus of the terminal, the method comprising the steps of: determining whether the terminal is operated in dynamic time division multiple access (hereinafter, TDD, time division duplexer) mode; determining whether the terminal receives service from a plurality of serving cells, when it is determined that the terminal is operated in dynamic TDD mode; determining a power headroom type (hereinafter, PH type) on the basis of a radio resource control (hereinafter, RRC) message and downlink control information (DCI) received from a base station, when it is determined that the terminal receives a service from the plurality of serving cells; and transmitting information about the determined PH type using an extended PHR format. In addition, suggested are a method for receiving a PHR by a base station and a base station apparatus capable of setting a TDD mode in the terminal and receiving the PHR from the terminal.
Abstract:
A data transmission method of a User Equipment, UE, in a Long Term Evolution, LTE, compliant mobile communications network, and a corresponding UE. The method comprises detecting reconfiguration of a bearer from a split bearer in which uplink Packet Data Convergence Protocol, PDCP, Protocol Data Units, PDUs, are transmitted to both a Master eNB, MeNB, and to a Secondary eNB, SeNB, to a non-split bearer in which uplink PDCP PDUs are transmitted only to the MeNB. If reconfiguration of a bearer from a split bearer to a non-split bearer in which uplink PDCP PDUs are transmitted to the MeNB is detected, the method further comprises initiating retransmission of PDCP PDUs from the first PDCP PDU for which transmission was attempted via the SeNB and for which there has been no confirmation of successful delivery by a protocol layer below the PDCP layer within the UE. The method further comprises retransmitting only PDCP PDUs for which transmission of the PDU was attempted via the SeNB.
Abstract:
A data transmission method of a User Equipment, UE, in a Long Term Evolution, LTE, compliant mobile communications network, and a corresponding UE. The method comprises detecting reconfiguration of a bearer from a split bearer in which uplink Packet Data Convergence Protocol, PDCP, Protocol Data Units, PDUs, are transmitted to both a Master eNB, MeNB, and to a Secondary eNB, SeNB, to a non-split bearer in which uplink PDCP PDUs are transmitted only to the MeNB. If reconfiguration of a bearer from a split bearer to a non-split bearer in which uplink PDCP PDUs are transmitted to the MeNB is detected, the method further comprises initiating retransmission of PDCP PDUs from the first PDCP PDU for which transmission was attempted via the SeNB and for which there has been no confirmation of successful delivery by a protocol layer below the PDCP layer within the UE. The method further comprises retransmitting only PDCP PDUs for which transmission of the PDU was attempted via the SeNB.
Abstract:
A data communication method of a terminal of a mobile communication system is provided. The data communication method includes transmitting a first message including location-related information of the terminal to a base station, receiving a second message including a Wireless Local Area Network (WLAN) Access Point (AP) list corresponding to the location-related information of the terminal, and scanning, if the WLAN AP list includes at least one WLAN AP, for WLAN APs included in the WLAN AP list.
Abstract:
A data transmission method of a User Equipment, UE, in a Long Term Evolution, LTE, compliant mobile communications network, and a corresponding UE. The method comprises detecting reconfiguration of a bearer from a split bearer in which uplink Packet Data Convergence Protocol, PDCP, Protocol Data Units, PDUs, are transmitted to both a Master eNB, MeNB, and to a Secondary eNB, SeNB, to a non-split bearer in which uplink PDCP PDUs are transmitted only to the MeNB. If reconfiguration of a bearer from a split bearer to a non-split bearer in which uplink PDCP PDUs are transmitted to the MeNB is detected, the method further comprises initiating retransmission of PDCP PDUs from the first PDCP PDU for which transmission was attempted via the SeNB and for which there has been no confirmation of successful delivery by a protocol layer below the PDCP layer within the UE. The method further comprises retransmitting only PDCP PDUs for which transmission of the PDU was attempted via the SeNB.
Abstract:
The present invention relates to a method and an apparatus for performing operations of an eNB and a UE to effectively use a minimization of drive test (MDT) technology in a mobile communication system. The present invention provides a method for transmitting/receiving MDT measurement information of an eNB in a mobile communication system, the method comprising the steps of: configuring an MDT in a UE; collecting MDT measurement information from the UE; determining whether enhanced inter-cell interference coordination (eICIC) is configured in the UE in which the MDT is configured, and, when the eICIC is configured in the UE, reporting indication information indicating that the MDT measurement information is affected by the eICIC together with the MDT measurement information.
Abstract:
According to an embodiment, a method for selecting an access network at user equipment in a mobile communication system includes step of receiving, from a base station, first setting information, and step of selecting the access network based on second setting information if the second setting information is received from the base station, or selecting the access network based on the first setting information if no second setting information is received. Using the proposed method, the user equipment can reduce user's inconvenience and save battery by blocking unnecessary offloading and wireless LAN scanning, and also can improve the quality of use and immediately respond to a cell change by preventing a ping-pong phenomenon.
Abstract:
According to an embodiment, a method for selecting an access network at user equipment in a mobile communication system includes step of receiving, from a base station, first setting information, and step of selecting the access network based on second setting information if the second setting information is received from the base station, or selecting the access network based on the first setting information if no second setting information is received. Using the proposed method, the user equipment can reduce user's inconvenience and save battery by blocking unnecessary offloading and wireless LAN scanning, and also can improve the quality of use and immediately respond to a cell change by preventing a ping-pong phenomenon.
Abstract:
A transmit power capability and power headroom report (PHR) method and an apparatus of a User Equipment (UE) operating in an Inter-evolved Node B (Inter-eNB) carrier aggregation or dual connectivity mode for use in a mobile communication system are provided. The transmit power capability and PHR method includes receiving configuration information for at least one medium access control (MAC) entity for transmitting and receiving a signal; receiving uplink resource allocation information for a first MAC entity included in the at least one MAC entity; and transmitting, if change of measurement on one of the at least one MAC entity is equal to or greater than a threshold, a power headroom report (PHR) on an uplink resource corresponding to the first MAC entity based on the uplink resource allocation information.
Abstract:
The present invention provides a method for controlling access of a terminal if the terminal accesses from a wireless LAN network to a mobile communication network, when the mobile communication network (for example, UMTS, LTE and the like) and the wireless LAN network are linked in a wireless communication system. Furthermore, the present invention provides a method for transmitting information on connectable peripheral wireless LAN networks. Thus, the present invention can reduce a load of a network since the network can control the access of a terminal, and can reduce unnecessary power consumption and solve a connection delay problem by providing a valid wireless LAN network list to the terminal.