摘要:
A power storage device cell is configured such that a capacitor positive electrode and a lithium positive electrode are directly connected with each other; a second electrode layer is formed of a material including particles of phosphoric-acid-type lithium compound having an olivine-type structure; the third electrode layers are formed mainly of particles of lithium titanate; and a third collector foil is formed of an aluminum foil.
摘要:
A power storage device cell is configured to include a capacitor positive electrode, a lithium positive electrode, and a common negative electrode in which electrode layers are formed on a collector foil in which penetration holes are formed, and such that the capacitor positive electrode and the lithium positive electrode are directly connected; each of the electrode layers of the common negative electrode is formed of a carbon-based material in which graphite particles and hard carbon particles are mixed, and the proportion of the hard carbon particles in the carbon-based material is from 5% by weight to 70% by weight.
摘要:
A power storage device cell is configured to include a capacitor positive electrode, a lithium positive electrode, and a common negative electrode in which electrode layers are formed on a collector foil in which penetration holes are formed, and such that the capacitor positive electrode and the lithium positive electrode are directly connected; each of the electrode layers of the common negative electrode is formed of a carbon-based material in which graphite particles and hard carbon particles are mixed, and the proportion of the hard carbon particles in the carbon-based material is from 5% by weight to 70% by weight.
摘要:
A power storage device cell is configured such that a capacitor positive electrode and a lithium positive electrode are directly connected with each other; a second electrode layer is formed of a material including particles of phosphoric-acid-type lithium compound having an olivine-type structure; the third electrode layers are formed mainly of particles of lithium titanate; and a third collector foil is formed of an aluminum foil.
摘要:
A cathode terminal includes a cathode collector foil connector connected to the blank of a cathode collector foil, a cathode terminal external lead-out portion, and an intra-cell cathode terminal radiator located between the cathode collector foil connector and the cathode terminal external lead-out portion and covering approximately half of one of the wide side surfaces of a flat-wound electrode portion. An anode terminal includes an anode collector foil connector connected to the blank of an anode collector foil, an anode terminal external lead-out portion, and an in-cell anode terminal radiator located between the anode collector foil connector and the anode terminal external lead-out portion and substantially covering a remaining portion of the one of the wider side surfaces of the flat-wound electrode portion.
摘要:
Provided is an energy storage device cell capable of enhancing energy density. The energy storage device cell includes: a battery main body including battery anode plate members and battery cathode plate members, in which the battery cathode plate members are placed at both ends in a stack direction; common anode plate members each including a common anode collector foil having a through-hole formed therein and common anode electrode layers, the common anode plate members being stacked on the battery cathode plate members placed at both ends in the stack direction of the battery main body; capacitor cathode plate members each including a capacitor cathode collector foil and a capacitor cathode electrode layer, in which the capacitor cathode electrode layer is placed between the common anode plate member and the capacitor cathode collector foil.
摘要:
Provided is an energy storage device cell capable of enhancing energy density. The energy storage device cell includes: a battery main body including battery anode plate members and battery cathode plate members, in which the battery cathode plate members are placed at both ends in a stack direction; common anode plate members each including a common anode collector foil having a through-hole formed therein and common anode electrode layers, the common anode plate members being stacked on the battery cathode plate members placed at both ends in the stack direction of the battery main body; capacitor cathode plate members each including a capacitor cathode collector foil and a capacitor cathode electrode layer, in which the capacitor cathode electrode layer is placed between the common anode plate member and the capacitor cathode collector foil.
摘要:
Conventional batteries have the problem that, when battery temperature rises above a temperature at which the separator melts and flows due to an internal short-circuit, a large short-circuit current is generated between the positive and negative electrodes, that further raises the battery temperature. As a result, the short-circuit current further increases. The inventive electrode increases its resistivity with increasing temperature, and a processing for producing the electrode is disclosed. The electrode of the invention has an electron conductive material containing a conductive filler and a resin and increases its resistivity with increasing temperature.
摘要:
Conventional batteries have a problem that, in case the battery temperature should rise to 100° C. or higher due to an internal short-circuit, etc., a large short-circuit current develops to generate heat. It follows that the battery temperature further increases, which can result in a further increase of the short-circuit current. Further, some of electrode structures involve reduction in discharge capacity. These problems are solved by a battery in which an electron conductive material (9), being in contact with an active material (8) in an electrode, comprises a conductive filler and a resin so that the electrode may increase its resistivity with a temperature rise, and the ratio of the particle size of the electron conductive material (9) to that of the active material (8) is in a range of from 0.1 to 20.
摘要:
A lithium ion secondary battery having an electrode body including a positive electrode made of a positive electrode active material layer joined to a current collector, a negative electrode made of a negative electrode active material layer joined to a current collector, a separator which is disposed between the positive electrode and the negative electrode and retains an electrolytic solution containing lithium ions, and a porous adhesive resin layer which retains the electrolytic solution and joins the separator to at least one of the positive electrode active material layer and to the negative electrode active material layer, the electrode body being sealed into a packaging bag, wherein an adhesive resin film capable of absorbing the electrolytic solution and gelling adheres the electrode body to the packaging bag.