摘要:
In a manufacturing process of a transistor including an oxide semiconductor film, oxygen doping treatment is performed on the oxide semiconductor film, and then heat treatment is performed on the oxide semiconductor film and an aluminum oxide film provided over the oxide semiconductor film. Consequently, an oxide semiconductor film which includes a region containing more oxygen than a stoichiometric composition is formed. The transistor formed using the oxide semiconductor film can have high reliability because the amount of change in the threshold voltage of the transistor by a bias-temperature stress test (BT test) is reduced.
摘要:
In a process of manufacturing a transistor including an oxide semiconductor layer, an amorphous oxide semiconductor layer which includes a region containing excess oxygen as compared to a stoichiometric composition ratio of an oxide semiconductor in a crystalline state is formed over a silicon oxide film, an aluminum oxide film is formed over the amorphous oxide semiconductor layer, and then heat treatment is performed so that at least part of the amorphous oxide semiconductor layer is crystallized and an oxide semiconductor layer which includes a crystal having a c-axis substantially perpendicular to a surface of the oxide semiconductor layer is formed.
摘要:
To provide a highly reliable semiconductor device manufactured by giving stable electric characteristics to a semiconductor device including an oxide semiconductor. In a manufacturing process of a transistor, an oxide semiconductor layer, a source electrode layer, a drain electrode layer, a gate insulating film, a gate electrode layer, and an aluminum oxide film are formed in this order, and then heat treatment is performed on the oxide semiconductor layer and the aluminum oxide film, whereby an oxide semiconductor layer from which an impurity containing a hydrogen atom is removed and which includes a region containing oxygen more than the stoichiometric proportion is formed. In addition, when the aluminum oxide film is formed, entry and diffusion of water or hydrogen into the oxide semiconductor layer from the air due to heat treatment in a manufacturing process of a semiconductor device or an electronic appliance including the transistor can be prevented.
摘要:
According to one aspect of the present invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide is applied as an electrode on the side of injecting a hole (a hole injection electrode; an anode) instead of the conventional conductive transparent oxide layer such as ITO. In addition, according to another aspect of the invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide, each of which content is different, is applied as a hole injection electrode. Preferably, silicon or a silicon oxide, concentration of the conductive layer on the side where it is connected to a TFT ranges from 1 atomic % to 6 atomic % and a silicon or silicon oxide concentration on the side of a layer containing an organic compound ranges from 7 atomic % to 15 atomic %.
摘要:
According to one aspect of the present invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide is applied as an electrode on the side of injecting a hole (a hole injection electrode; an anode) instead of the conventional conductive transparent oxide layer such as ITO. In addition, according to another aspect of the invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide, each of which content is different, is applied as a hole injection electrode. Preferably, silicon or a silicon oxide concentration of the conductive layer on the side where it is connected to a TFT ranges from 1 atomic % to 6 atomic % and a silicon or silicon oxide concentration on the side of a layer containing an organic compound ranges from 7 atomic % to 15 atomic %.
摘要:
According to one aspect of the present invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide is applied as an electrode on the side of injecting a hole (a hole injection electrode; an anode) instead of the conventional conductive transparent oxide layer such as ITO. In addition, according to another aspect of the invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide, each of which content is different, is applied as a hole injection electrode. Preferably, silicon or a silicon oxide concentration of the conductive layer on the side where it is connected to a TFT ranges from 1 atomic % to 6 atomic % and a silicon or silicon oxide concentration on the side of a layer containing an organic compound ranges from 7 atomic % to 15 atomic %.
摘要:
According to one aspect of the present invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide is applied as an electrode on the side of injecting a hole (a hole injection electrode; an anode) instead of the conventional conductive transparent oxide layer such as ITO. In addition, according to another aspect of the invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide, each of which content is different, is applied as a hole injection electrode. Preferably, silicon or a silicon oxide concentration of the conductive layer on the side where it is connected to a TFT ranges from 1 atomic % to 6 atomic % and a silicon or silicon oxide concentration on the side of a layer containing an organic compound ranges from 7 atomic % to 15 atomic %.
摘要:
According to one aspect of the present invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide is applied as an electrode on the side of injecting a hole (a hole injection electrode; an anode) instead of the conventional conductive transparent oxide layer such as ITO. In addition, according to another aspect of the invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide, each of which content is different, is applied as a hole injection electrode. Preferably, silicon or a silicon oxide concentration of the conductive layer on the side where it is connected to a TFT ranges from 1 atomic % to 6 atomic % and a silicon or silicon oxide concentration on the side of a layer containing an organic compound ranges from 7 atomic % to 15 atomic %.
摘要:
According to one aspect of the present invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide is applied as an electrode on the side of injecting a hole (a hole injection electrode; an anode) instead of the conventional conductive transparent oxide layer such as ITO. In addition, according to another aspect of the invention, a laminated structure of conductive transparent oxide layers containing silicon or silicon oxide, each of which content is different, is applied as a hole injection electrode. Preferably, silicon or a silicon oxide concentration of the conductive layer on the side where it is connected to a TFT ranges from 1 atomic % to 6 atomic % and a silicon or silicon oxide concentration on the side of a layer containing an organic compound ranges from 7 atomic % to 15 atomic %.
摘要:
A semiconductor device having good TFT characteristics is realized. By using a high purity target as a target, using a single gas, argon (Ar), as a sputtering gas, setting the substrate temperature equal to or less than 300° C., and setting the sputtering gas pressure from 1.0 Pa to 3.0 Pa, the film stress of a film is made from −1×1010 dyn/cm2 to 1×1010 dyn/cm2. By thus using a conducting film in which the amount of sodium contained within the film is equal to or less than 0.3 ppm, preferably equal to or less than 0.1 ppm, and having a low electrical resistivity (equal to or less than 40 μΩ·cm), as a gate wiring material and a material for other wirings of a TFT, the operating performance and the reliability of a semiconductor device provided with the TFT can be increased.
摘要翻译:实现了具有良好的TFT特性的半导体器件。 通过使用高纯度靶作为靶,使用单一气体氩(Ar)作为溅射气体,将基板温度设定为300℃以下,将溅射气体压力设定为1.0Pa〜3.0 Pa时,膜的膜应力为-1×1010dyn / cm 2〜1×1010dyn / cm 2。 通过这样使用导电膜,其中膜中所含的钠的量等于或小于0.3ppm,优选等于或小于0.1ppm,并且具有低电阻率(等于或小于40μ&OHgr· cm),作为栅极布线材料和TFT的其它布线的材料,可以提高设置有TFT的半导体器件的操作性能和可靠性。