Abstract:
A high-frequency transmission line in which the alternating-current resistance is low is provided. A high-frequency transmission line 2 is a high-frequency transmission line 2 to transmit an alternating-current electric signal, and contains metal and carbon nanotube, and the carbon nanotube is unevenly distributed at a peripheral part 8 of a cross-section that is of the high-frequency transmission line 2 and that is perpendicular to a transmission direction of the alternating-current electric signal.
Abstract:
A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and a dimension of the second air gap is greater than a dimension of the first air gap in a thickness direction of the substrate.
Abstract:
A MEMS switch includes a first signal line provided in a first beam, a first GND adjacent to the first signal line, a second signal line provided in a second beam, and a second GND adjacent to the second signal line. A contact terminal is fixed to any one of the first signal line and the second signal line and performs connection between the first signal line and the second signal line according to deformation of the first beam.
Abstract:
Disclosed herein is a lithium secondary battery that includes an electrode assembly having a weight energy density of 250 Wh/Kg or more, and a heat exhaust layer provided on a surface of the electrode assembly. The electrode assembly has a structure in which a positive electrode and a negative electrode are alternately stacked through a separator. The positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on a surface of the positive electrode current collector. The negative electrode including a negative electrode current collector and a negative electrode active material layer formed on a surface of the negative electrode current collector.
Abstract:
MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and a dimension of the second air gap is greater than a dimension of the first air gap in a thickness direction of the substrate.
Abstract:
Disclosed herein is a negative electrode for non-aqueous electrolyte secondary battery that includes a negative electrode current collector, and a negative electrode active material layer. An area change rate and a thickness change rate of the negative electrode active material layer associated with charging are 0.1% or more and 10% or more, respectively. A triangular region having an intersection between first and second straight lines, a first point existing on the first straight line and being away from the intersection in the first direction toward the first side by a first distance, and a second point exists on the second straight line and being away from the intersection in the second direction toward the second side by a second distance, as vertices are cut away such that the triangular region has neither the negative electrode current collector nor the negative electrode active material layer.
Abstract:
Provided is a coil component including a coil portion that has two ring-shaped planar coil portions individually including a coil-wound portion and an insulative resin layer which covers the periphery of the coil-wound portion within the same layer as the coil-wound portion, an insulative resin layer being interposed between the planar coil portions adjacent to each other in the stacking direction of the planar coil portions, and a pair of insulative resin layers being respectively positioned on one end side and the other end side of the two planar coil portions in the stacking direction; and a covering portion that covers the coil portion. In regard to the stacking direction, the thickness of the insulative resin layer is thinner than the thickness of each of the pair of insulative resin layers.
Abstract:
A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and an area of the second membrane is 1.21 times or more and 2.25 times or less an area of the first membrane when viewed in a thickness direction of the substrate.
Abstract:
A high-frequency transmission line in which the alternating-current resistance is low and that is hard to disconnect is provided. A high-frequency transmission line 2 is a high-frequency transmission line 2 to transmit an alternating-current electric signal, and contains metal and carbon nanotube, and the carbon nanotube is unevenly distributed at a central part 6 of a cross-section that is of the high-frequency transmission line 2 and that is perpendicular to a transmission direction of the alternating-current electric signal.