Abstract:
A method of fabricating a reinforced thermoplastic composite part comprises moving a laminate of reinforcing fibers embedded in a thermoplastic matrix for sequential operations through a heating station and then a forming station. The heating station is used to soften the thermoplastic matrix in a portion of the laminate while the forming station is used to impart a geometry to a portion of the laminate whose thermoplastic matrix had just been softened. The softening and the forming are performed simultaneously on different portions of the laminate.
Abstract:
A method of fabricating a thermoplastic composite tubular structure provides a mandrel of a soluble, expandable material. The method overbraids the mandrel with a continuous fiber thermoplastic composite material to form an overbraided mandrel. The method installs the overbraided mandrel into a matched tooling assembly. The method heats in a heating apparatus the matched tooling assembly with the installed overbraided mandrel at a specified heating profile in order to consolidate the thermoplastic composite material and form a thermoplastic composite tubular structure. The method cools the matched tooling assembly with the formed thermoplastic composite tubular structure at a specified cooling profile. The method removes the formed thermoplastic composite tubular structure from the matched tooling assembly. The method solubilizes the mandrel to permanently remove the mandrel from the formed thermoplastic composite tubular structure.
Abstract:
An induction welding system is provided. The system includes at least one induction coil configured to generate an alternating magnetic field, and a smart susceptor film sized to be positioned between a first component and a second component to be welded to the first component. The smart susceptor film includes a thermoplastic resin, and a plurality of metal alloy wires disposed in the thermoplastic resin such that the plurality of metal alloy wires are oriented substantially parallel to the generated alternating magnetic field.
Abstract:
One example of the present disclosure relates to a monolithic part including an exterior wall and a first cavity. The first cavity includes a first aperture in communication with the exterior wall and a first inner surface defining a first shape. The first shape prevents extraction from the first cavity, via the first aperture, of a first virtual object having the first shape.
Abstract:
A method of forming a monolithic aircraft part includes additively forming a first cavity, defined by a first wall of the part, additively forming a second cavity, defined by a second wall of the part, so that the first cavity and the second cavity are not in communication with each other and share a common wall portion so that the second cavity is partially contained within the first cavity. Additively forming the first cavity includes forming a first aperture, extending through the first wall, forming a second aperture, extending through the first wall, and forming a first inner surface of the first wall, defining a first shape, wherein a first object, permanently having the first shape, would not be able to be mechanically extracted from the first cavity via the first aperture or the second aperture.
Abstract:
A method of manufacturing a radius filler may include providing a plurality of fibers, braiding the plurality of fibers into a braided preform, shaping the braided preform into a braided radius filler, and cutting the braided radius filler to a desired length.
Abstract:
One example of the present disclosure relates to a monolithic part including an exterior wall and a first cavity. The first cavity includes a first aperture in communication with the exterior wall and a first inner surface defining a first shape. The first Shape prevents extraction from the first cavity, via the first aperture, of a first virtual object having the first shape.
Abstract:
A method of forming a structural tube may include urging a substantially flat thermoplastic sandwich sheet against a mandrel and heating the thermoplastic sandwich sheet to a temperature below a glass transition temperature. The method may further include allowing the thermoplastic sandwich sheet to cool and removing the mandrel, thereby forming a tube portion.
Abstract:
A method of fabricating a thermoplastic composite tubular structure provides a mandrel of a soluble, expandable material. The method overbraids the mandrel with a continuous fiber thermoplastic composite material to form an overbraided mandrel. The method installs the overbraided mandrel into a matched tooling assembly. The method heats in a heating apparatus the matched tooling assembly with the installed overbraided mandrel at a specified heating profile in order to consolidate the thermoplastic composite material and form a thermoplastic composite tubular structure. The method cools the matched tooling assembly with the formed thermoplastic composite tubular structure at a specified cooling profile. The method removes the formed thermoplastic composite tubular structure from the matched tooling assembly. The method solubilizes the mandrel to permanently remove the mandrel from the formed thermoplastic composite tubular structure.
Abstract:
A method of manufacturing a radius filler may include providing a plurality of fibers, braiding the plurality of fibers into a braided preform, shaping the braided preform into a braided radius filler, and cutting the braided radius filler to a desired length.