摘要:
The invention relates to solid or gel-type nanocomposite material which can be polymerised, containing a) 4.9 95.9 wt. % of a soluble polymer; b) 4-95 wt. % of a partially or totally condensed silane selected from the group of epoxyalkoxysilanes, alkoxysilanes and alkylalkoxysilanes, the silane having an inorganic condensation degree of between 33-100% and an organic conversion degree of between 0-95%; c) 0-60 wt. % of an acrylate; d) 0.1-50 wt. % of surface modified nanometric particles selected from the group of oxides, sulphides, selenides, tellurides, halogenides, carbides, arsenides, antimonides, nitrides, phosphides, carbonates, carboxylates, phosphates, sulphates, silicates, titanates, zirconates, aluminates, stannates, plumbates and a mixed oxides; e) 0-50 wt.-% of a plasticiser, f) 0-5 wt. % of a thermal or photochemical cross-linking initiator, sensitizer, auxiliary wetting agent, adhesive agent, antioxidant, stabiliser, colouring agent, photochrome material and thermochrome material in relation to the total weight (dry weight) of the nanocomposite material.
摘要:
The invention relates to solid or gel-type nanocomposite material which can be polymerised, containing a) 4.9 95.9 wt. % of a soluble polymer; b) 4-95 wt. % of a partially or totally condensed silane selected from the group of epoxyalkoxysilanes, alkoxysilanes and alkylalkoxysilanes, the silane having an inorganic condensation degree of between 33-100% and an organic conversion degree of between 0-95%; c) 0-60 wt. % of an acrylate; d) 0.1-50 wt. % of surface modified nanometric particles selected from the group of oxides, sulphides, selenides, tellurides, halogenides, carbides, arsenides, antimonides, nitrides, phosphides, carbonates, carboxylates, phosphates, sulphates, silicates, titanates, zirconates, aluminates, stannates, plumbates and a mixed oxides; e) 0-50 wt.-% of a plasticizer; f) 0-5 wt. % of a thermal or photochemical cross-linking initiator, sensitizer, auxiliary wetting agent, adhesive agent, antioxidant, stabiliser, coloring agent, photochrome material and thermochrome material in relation to the total weight (dry weight) of the nanocomposite material.
摘要:
The invention relates to an alternative composite mask that is substantially composed of a transparent support film coated with a transparent polymer matrix that contains light-absorbing pigment particles or metal particles having an average particle size d50 ranging between 0.5 and 10 μm.
摘要:
The invention relates to a plastic film with an interference multilayer system applied thereon that comprises at least two layers. Said layers can be obtained by hardening and/or applying thermal treatment to a coating composition containing nanoscale inorganic solid particles having polymerizable and/or polycondensable organic surface groups, thereby forming a layer that is crosslinked by means of the polymerizable and/or polycondensable organic surface groups. The films can be used as an optical laminating film.
摘要:
The invention relates to an alternative composite mask that is substantially composed of a transparent support film coated with a transparent polymer matrix that contains light-absorbing pigment particles or metal particles having an average particle size d50 ranging between 0.5 and 10 μm.
摘要:
The invention relates to a method for microstructuring electronic components, which yields high resolutions (≦200 nm) at a good aspect ratio while being significantly less expensive than photolithographic methods. The inventive method comprises the following steps: i) a planar unhardened sol film of a nanocomposite composition according to claim 1 is produced; ii) a target substrate consisting of a bottom coat (b) and a support (c) is produced; iii) sol film material obtained in step i) is applied to the bottom coat (b) obtained in step ii) by means of a microstructured transfer embossing stamp; iv) the applied sol film material is hardened; v) the transfer embossing stamp is separated, whereby an embossed microstructure is obtained as a top coat (a). The method for producing a microstructured semiconductor material comprises the following additional steps: vi) the remaining layer of the nanocomposite sol film is plasma etched, preferably with CHF3/O2 plasma; vii) the bottom coat is plasma etched, preferably with O2 plasma; viii) the semiconductor material is etched or the semiconductor material is doped in the etched areas.
摘要翻译:本发明涉及一种用于微结构化电子部件的方法,其以良好的纵横比产生高分辨率(<= 200nm),同时显着地低于光刻方法。 本发明的方法包括以下步骤:i)制备根据权利要求1的纳米复合组合物的平面未硬化溶胶膜; ii)制备由底涂层(b)和载体(c)组成的靶基材; iii)在步骤i)中获得的溶胶膜材料通过微结构转印压花印刷施加到在步骤ii)中获得的底涂层(b) iv)涂覆的溶胶膜材料硬化; v)分离转印压花印模,由此获得作为顶涂层(a)的压花微结构。 制造微结构化半导体材料的方法包括以下附加步骤:vi)纳米复合溶胶膜的剩余层被等离子体蚀刻,优选地具有CHF 3 O 2 / O 2等离子体 ; vii)底涂层被等离子体蚀刻,优选为O 2等离子体; viii)蚀刻半导体材料或者在蚀刻区域中掺杂半导体材料。
摘要:
The invention relates to a method for microstructuring electronic components, which yields high resolutions (≦200 nm) at a good aspect ratio while being significantly less expensive than photolithographic methods. The inventive method comprises the following steps: i) a planar unhardened sol film of a nanocomposite composition according to claim 1 is produced; ii) a target substrate consisting of a bottom coat (b) and a support (c) is produced; iii) sol film material obtained in step i) is applied to the bottom coat (b) obtained in step ii) by means of a microstructured transfer embossing stamp; iv) the applied sol film material is hardened; v) the transfer embossing stamp is separated, whereby an embossed microstructure is obtained as a top coat (a). The method for producing a microstructured semiconductor material comprises the following additional steps: vi) the remaining layer of the nanocomposite sol film is plasma etched, preferably with CHF3/O2 plasma; vii) the bottom coat is plasma etched, preferably with O2 plasma; viii) the semiconductor material is etched or the semiconductor material is doped in the etched areas.
摘要翻译:本发明涉及一种用于微结构化电子部件的方法,其以良好的纵横比产生高分辨率(<= 200nm),同时显着地低于光刻方法。 本发明的方法包括以下步骤:i)制备根据权利要求1的纳米复合组合物的平面未硬化溶胶膜; ii)制备由底涂层(b)和载体(c)组成的靶基材; iii)在步骤i)中获得的溶胶膜材料通过微结构转印压花印刷施加到在步骤ii)中获得的底涂层(b) iv)涂覆的溶胶膜材料硬化; v)分离转印压花印模,由此获得作为顶涂层(a)的压花微结构。 制造微结构化半导体材料的方法包括以下附加步骤:vi)纳米复合溶胶膜的剩余层被等离子体蚀刻,优选地具有CHF 3 O 2 / O 2等离子体 ; vii)底涂层被等离子体蚀刻,优选为O 2等离子体; viii)蚀刻半导体材料或者在蚀刻区域中掺杂半导体材料。
摘要:
A surface light source comprising a light emitting part (11) consisting of a single spot light source, and a light guide plate (12), wherein a reflection plane (13) is provided on the back side of the light guide plate and a prism pattern (15) is also provided. A directional light diffusion film (14) consisting of at least two light scattering/transmitting phases having different refractive indexes, where one phase having a larger refractive index includes a large number of regions having a columnar structure extending in the thickness direction of the film and the columnar structure is inclining against the normal direction of the film at an angle of 5-60°, is arranged on the light exit surface side of the light guide plate (12) such that the scattering direction of the directional light diffusion film becomes the direction of uneven luminance. Unevenness of luminance becomes inconspicuous especially when it is observed from an oblique direction and highly efficient brighter irradiation of light is ensured in the front direction of a screen.
摘要:
A surface light source device comprises a light emitting section (11) made of a single spot light source, a light guide plate (12), a reflective surface (13) provided on the back side of the light guide plate, and a prism pattern (15). On the light emitting surface side of the light guide plate (12), there is provided a directional light scattering film (14) consisting of at least two phases having different refractive indexes and scattering light when transmitting it. One phase of a larger refractive index includes a plenty of areas having a columnar structure extending in the thickness direction of a film and arranged to be perpendicular to a normal to the film, and exhibiting a maximum scattering angle of 10-40°.
摘要:
A method of preparing oxoquazepam which comprises reacting 2,2,2-trifluoroethyl trifluoromethanesulfonate with 7-chloro-1,3-dihydro-5-(2-fluorophenyl)-2H-1,4-benzodiazepin-2-one in tetrahydrofuran or ethyl acetate in the presence of potassium carbonate under reflux. According to the method of the present invention, high purity oxoquazepam can be manufactured in high yields.