Abstract:
A test and measurement instrument includes a coefficient storage facility coupled to a programmable filter. The coefficient storage facility is configured to store at least two pre-determined filter coefficient sets, and configured to pass a selected one of the at least two pre-determined filter coefficient sets to the filter based on a measurement derived using a compensation oscillator. The measurement may include clock delay and clock skew. In some examples the test and measurement instrument may additionally adjust clock delay and/or clock skew in addition to selecting appropriate filter coefficients.
Abstract:
A system includes a plurality of oscilloscopes, each oscilloscope having an output port and an input port, a cable connecting the output port of an initial oscilloscope of the plurality of oscilloscopes to the input port of a second oscilloscope of the plurality of oscilloscopes, the initial oscilloscope having a processing element to generate a master run clock, the second oscilloscope having a processing element including a phase-locked loop to lock a slave run clock to the master run clock, wherein the processing element of one of the oscilloscopes executes code to cause the processing element to manipulate one of the run clocks to pass trigger information to another of the plurality of oscilloscopes. A method of synchronizing at least two oscilloscopes including a master oscilloscope and at least one slave oscilloscope includes connecting the at least two oscilloscopes together using output ports and input ports of the at least two oscilloscopes and at least one cable; sending a master run clock from the master oscilloscope to at least one slave oscilloscope; synchronizing a run clock of the at least one slave oscilloscope to the master run clock; recognizing a trigger event at a first oscilloscope of the at least two oscilloscopes; altering the run clock at the first oscilloscope to encode a trigger indication; and receiving the altered run clock at a second oscilloscope of the at least two oscilloscopes, wherein the trigger indication causes the second oscilloscope to recognize the trigger event.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.
Abstract:
A system includes a plurality of oscilloscopes, each oscilloscope having an output port and an input port, a cable connecting the output port of an initial oscilloscope of the plurality of oscilloscopes to the input port of a second oscilloscope of the plurality of oscilloscopes, the initial oscilloscope having a processing element to generate a master run clock, the second oscilloscope having a processing element including a phase-locked loop to lock a slave run clock to the master run clock, wherein the processing element of one of the oscilloscopes executes code to cause the processing element to manipulate one of the run clocks to pass trigger information to another of the plurality of oscilloscopes. A method of synchronizing at least two oscilloscopes including a master oscilloscope and at least one slave oscilloscope includes connecting the at least two oscilloscopes together using output ports and input ports of the at least two oscilloscopes and at least one cable; sending a master run clock from the master oscilloscope to at least one slave oscilloscope; synchronizing a run clock of the at least one slave oscilloscope to the master run clock; recognizing a trigger event at a first oscilloscope of the at least two oscilloscopes; altering the run clock at the first oscilloscope to encode a trigger indication; and receiving the altered run clock at a second oscilloscope of the at least two oscilloscopes, wherein the trigger indication causes the second oscilloscope to recognize the trigger event.
Abstract:
A test and measurement instrument including a user interface configured to receive instructions to perform a signal path calibration for a user-specific setting from a user; a memory configured to store signal path calibration data; and one or more processors that can determine an actual signal path hardware setting for the user-specific setting, determine an adjustment to adjust the actual signal path hardware setting to the user-specific setting, adjust the actual signal path hardware setting by the adjustment to accurately represent the user-specific setting, and store the user-specific setting and the adjusted signal path hardware setting in the signal path calibration data.
Abstract:
A test and measurement instrument includes a coefficient storage facility coupled to a programmable filter. The coefficient storage facility is configured to store at least two pre-determined filter coefficient sets, and configured to pass a selected one of the at least two pre-determined filter coefficient sets to the filter based on a measurement derived using a compensation oscillator. The measurement may include clock delay and clock skew. In some examples the test and measurement instrument may additionally adjust clock delay and/or clock skew in addition to selecting appropriate filter coefficients.
Abstract:
A test and measurement instrument includes a coefficient storage facility coupled to a programmable filter. The coefficient storage facility is configured to store at least two pre-determined filter coefficient sets, and configured to pass a selected one of the at least two pre-determined filter coefficient sets to the filter based on a measurement derived using a compensation oscillator. The measurement may include clock delay and clock skew. In some examples the test and measurement instrument may additionally adjust clock delay and/or clock skew in addition to selecting appropriate filter coefficients.
Abstract:
An accessory device has a test port, an instrument port to connect to an instrument having an operating bandwidth, and one or more configurable signal paths connectable between the test port and the instrument port to convert a signal from the test port having a first frequency range to a signal having a second frequency range different than the first frequency range. A test and measurement system has a test and measurement instrument having an operating bandwidth, and an accessory device. The accessory device has a first instrument port to connect the accessory device to the test and measurement instrument, a test port to connect the accessory device to a device under test, and one or more configurable signal paths connectable between the test port and the instrument port to down-convert a signal from the test port having a first frequency range to a signal having a second frequency range lower than the first frequency range.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.
Abstract:
A system includes a plurality of oscilloscopes, each oscilloscope having an output port and an input port, a cable connecting the output port of an initial oscilloscope of the plurality of oscilloscopes to the input port of a second oscilloscope of the plurality of oscilloscopes, the initial oscilloscope having a processing element to generate a master run clock, the second oscilloscope having a processing element including a phase-locked loop to lock a slave run clock to the master run clock, wherein the processing element of one of the oscilloscopes executes code to cause the processing element to manipulate one of the run clocks to pass trigger information to another of the plurality of oscilloscopes. A method of synchronizing at least two oscilloscopes including a master oscilloscope and at least one slave oscilloscope includes connecting the at least two oscilloscopes together using output ports and input ports of the at least two oscilloscopes and at least one cable; sending a master run clock from the master oscilloscope to at least one slave oscilloscope; synchronizing a run clock of the at least one slave oscilloscope to the master run clock; recognizing a trigger event at a first oscilloscope of the at least two oscilloscopes; altering the run clock at the first oscilloscope to encode a trigger indication; and receiving the altered run clock at a second oscilloscope of the at least two oscilloscopes, wherein the trigger indication causes the second oscilloscope to recognize the trigger event.