Abstract:
A method for forming a silicon film includes supplying a first processing gas including a silicon-containing gas to a substrate to deposit a first silicon film under a first processing condition; and supplying a second processing gas including the silicon-containing gas to the substrate to deposit a second silicon film under a second processing condition. A second in-plane distribution of film characteristic when the second silicon film is deposited under the second processing condition is different from a first in-plane distribution of the film characteristic when the first silicon film is deposited under the first processing condition.
Abstract:
There is provided a method of forming a polysilicon film, which includes: forming an amorphous silicon film on a substrate; forming a cap layer, which is formed of an amorphous germanium film or an amorphous silicon germanium film, on the amorphous silicon film; forming crystal nuclei of a silicon in the amorphous silicon film by heating the substrate at a first temperature; removing the cap layer after the crystal nuclei are formed; and growing the crystal nuclei by heating the substrate from which the cap layer is removed, at a second temperature equal to or higher than the first temperature.
Abstract:
A vertical heat treatment apparatus includes: a gas supply part that supplies a film forming gas into a reaction chamber; and gas distribution adjusting members arranged above and below a region in which target substrates are disposed. The gas distribution adjusting members include a first plate-shaped member with convex and concave portions and a second plate-shaped member with convex and concave portions, the first plate-shaped member and the second plate-shaped member being arranged above and below each other, and the first plate-shaped member and the second plate-shaped member being arranged above a bottom plate of a substrate holding and supporting part and below a ceiling plate of a substrate holding and supporting part. The first plate-shaped member has a first surface area and the second plate-shaped member has a second surface area different from the first surface area.
Abstract:
A heat treatment apparatus for applying a heat treatment to a plurality of substrates including a product substrate and a dummy substrate includes: a process container configured to accommodate the plurality of substrates; a storage container provided outside the process container and configured to store the dummy substrate; and an oxidation mechanism configured to oxidize the dummy substrate stored in the storage container.
Abstract:
There is provided a cleaning method of a film forming apparatus in which a process of forming a silicon film, a germanium film or a silicon germanium film on a substrate mounted on a substrate holder in a processing container is performed, comprising: etching away the silicon film, the germanium film or the silicon germanium film adhered to an interior of the processing container including the substrate holder by supplying a halogen-containing gas not containing fluorine into the processing container in a state where the substrate holder, which was stored in a dew point-controlled atmosphere after the film forming process, is accommodated in the processing container with no substrate being mounted thereon.
Abstract:
A film forming apparatus includes a first and second source gas suppliers configured to limitedly supply a source gas only to a first and second substrate areas, respectively, a reaction gas supplier configured to supply a reaction gas to the first substrate area and the second substrate area, a purge gas supplier configured to supply a purge gas for preventing the source gas supplied to one of the first and second substrate areas from being supplied to the other substrate area, a division-purpose substrate held between the first and second substrate areas in a substrate holding part, and a control part configured to output a control signal such that a first cycle including supplying the source gas and the reaction gas to the first substrate area and a second cycle including supplying the source gas and the reaction gas to the second substrate area are each performed plural times.
Abstract:
A vertical heat treatment apparatus for performing a film forming treatment on a plurality of target substrates having a surface with convex and concave portions includes: a gas supply unit that supplies a film forming gas into a reaction chamber; and gas distribution adjusting members made of quartz and installed to be positioned respectively above and below a region in which the plurality of target substrates held and supported by a substrate holding and supporting unit are disposed, wherein if S is a surface area per unit region of the gas distribution adjusting members and S0 is a surface area per unit region obtained by dividing a surface area of the target substrate by a surface area calculated based on an external dimension of the target substrate, a value obtained by dividing S by S0 (S/S0) is set to be 0.8 or more.
Abstract:
A method for manufacturing a semiconductor device is provided. In the method, an amorphous silicon film is deposited in a recess provided in a surface of a substrate by supplying a silicon-containing gas to the substrate. The amorphous silicon film is etched by supplying an etching gas to the substrate so as to leave the amorphous silicon film on a bottom of the recess. A silicon film is deposited on the amorphous silicon film by supplying dichlorosilane to the substrate.
Abstract:
A film forming method includes forming an amorphous semiconductor film on a recess, forming a first polycrystalline semiconductor film by performing heat treatment on the amorphous semiconductor film, and forming a second polycrystalline semiconductor film on the first polycrystalline semiconductor film formed by the heat treatment.
Abstract:
A film forming apparatus includes: first and second source gas nozzles installed so as to extend in an arrangement direction of the substrates, each of the source gas nozzles including a plurality of gas ejection holes formed to eject the source gas toward central regions of the substrates at height positions corresponding to gaps between the substrates; a reaction gas supply unit configured to supply the reaction gas into the reaction vessel; first and second source gas supply lines respectively connected to the first and second source gas nozzles; first and second tanks respectively installed on the first and source gas supply lines, and configured to accumulate the source gas in a pressurized state; valves respectively installed at upstream and downstream sides of the first tank and at upstream and downstream sides of the second tank; and an exhaust port configured to evacuate the interior of the reaction vessel.