Abstract:
Provided is a laminate having at least a base material and a fine cellulose layer which includes fine cellulose having a carboxyl group, the laminate characterized in being obtained by laminating two or more of the fine cellulose layer. Also provided is a method for manufacturing a laminate, comprising the steps of (1) coating the base material with a liquid dispersion that includes fine cellulose having a carboxyl group, (2) forming a fine cellulose layer by drying the liquid dispersion used for coating, and (3) laminating fine cellulose layers by repeating steps (1) and (2).
Abstract:
The present invention provides a composition for forming a film and its resultant film which has a high level of adhesiveness to a substrate and has good gas barrier properties. The composition for forming a film is prepared by adding a silane coupling agent to an aqueous dispersion liquid in which a cellulose nanofiber is dispersed in an aqueous medium. In addition, the composition for forming a film is also prepared by blending an aqueous dispersion liquid (a) which contains a cellulose nanofiber and has a pH 4-9 with a hydrolysis liquid (b) which contains alkoxysilane hydrolysates and has a pH 2-4 by a weight ratio of “cellulose nanofiber”/“alkoxysilane (in terms of SiO2)” in the range from 0.1 to 5.
Abstract:
An improved catalyst support can be provided by a process for producing a carbon fiber composite which comprises: a step of subjecting metal fine particles of either at least one metal or a compound containing the metal to reductive deposition on fine cellulose having carboxyl groups on the crystal surface to make a composite composed of both the fine cellulose and the metal fine particles; and a step of carbonizing the fine cellulose of the composite to prepare a carbon fiber composite.
Abstract:
A method for preparing a cellulose dispersion includes oxidizing cellulose; preparing cellulose nanofibers by defibrating the oxidized cellulose; and adding a water-soluble polymer and inorganic particles to the dispersion containing the cellulose nanofibers.
Abstract:
An improved catalyst support can be provided by a process for producing a carbon fiber composite which comprises: a step of subjecting metal fine particles of either at least one metal or a compound containing the metal to reductive deposition on fine cellulose having carboxyl groups on the crystal surface to make a composite composed of both the fine cellulose and the metal fine particles; and a step of carbonizing the fine cellulose of the composite to prepare a carbon fiber composite. The invention also relates to a carbon fiber composite made by the process, a catalyst support, and a polymer electrolyte fuel cell.