Abstract:
The present invention provides a layout pattern of a static random access memory (SRAM), comprising at least one substrate, two SRAM units on the substrate, respectively located in a first region and a second region which is adjacent to the first region. Each of the SRAM units includes a first inverter coupled to a second inverter and configured to form a latching circuit, the first inverter includes a first pull-up transistor (PU1) and a first pull-down transistor (PD1), the second inverter includes a second pull-up transistor (PU2) and a second pull-down transistor (PD2). A dummy layer crossing the first a region and the second region, and between the PD1 in the first region and the PD1 in the second region, and a contact structure on the dummy layer, electrically connected to a voltage source Vss.
Abstract:
An inverter structure includes a first fin structure and a second fin structure respectively disposed within a P-type transistor region and an N-type transistor region on a substrate. Agate line is disposed on the substrate. A first end of the gate line is within the P-type transistor region, and a second end of the gate line is within the N-type transistor region. Two dummy gate lines are disposed at two sides of the gate line. Each dummy gate line has a third end within the P-type transistor region, and a fourth end within the N-type transistor region. A distance between the first end and the first fin structure is greater than a distance between the third end and the first fin structure. The distance between the second end and the second fin structure is smaller than a distance between the fourth end and the second fin structure.
Abstract:
A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region, a second cell region, a third cell region, and a fourth cell region and a diffusion region on the substrate extending through the first cell region, the second cell region, the third cell region, and the fourth cell region. Preferably, the diffusion region includes a H-shape according to a top view.
Abstract:
A layout pattern of static random access memory at least includes a substrate, a plurality of fin structures on the substrate, a plurality of gate structures on the substrate and spanning the fin structures to form a plurality of transistors distributed on the substrate, the plurality of transistors include, a first pull-up transistor PU1, a first pull-down transistor PD1, a second pull-up transistor PU2, a second pull-down transistor PD2, a first pass gate transistor PG1, a second pass gate transistor PG2, a first read transistor RPD and a second read transistor RPG, and an additional fin structure, the additional fin structure is located between the fin structure of the first pass gate transistor PG1 and the fin structure of the second read transistor RPG.
Abstract:
A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region and a second cell region and a diffusion region on the substrate extending through the first cell region and the second cell region. Preferably, the diffusion region includes a first H-shape and a second H-shape according to a top view.
Abstract:
A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region, a second cell region, a third cell region, and a fourth cell region and a diffusion region on the substrate extending through the first cell region, the second cell region, the third cell region, and the fourth cell region. Preferably, the diffusion region includes a H-shape according to a top view.
Abstract:
A semiconductor device includes a first circuit structure and a second circuit structure. The first circuit structure has a first line terminal. The second circuit structure has a second line terminal. The first line terminal and the second line terminal are formed in a first circuit layer but separated by a gap. A conductive structure is forming in a second circuit layer above or below the first circuit layer, to electrically connect the first line terminal and the second line terminal.
Abstract:
A SRAM cell includes a first pass-gate device and a second-pass gate device comprising a first conductivity type, a first pull-down device and a second pull-down device comprising the first conductivity type, and a first pull-up device and a second pull-up device comprising a second conductivity type complementary to the first conductivity type. The first pass-gate device and the second pass-gate device respectively include first lightly-doped drains (hereinafter abbreviated as LDDs. The first pull-down device and the second pull-down device respectively include second LDDs. And a dosage of the first LDDs is different from a dosage of the second LDDs.
Abstract:
The present invention provides a layout pattern of an 8-transistor static random access memory (8T-SRAM), at least including a first diffusion region, a second diffusion region and a third diffusion region disposed on a substrate, a critical dimension region being disposed between the first diffusion region and the third diffusion region. The critical dimension region directly contacts the first diffusion region and the third diffusion region, a first extra diffusion region, a second extra diffusion region and a third extra diffusion region disposed surrounding and directly contacting the first diffusion region, the second diffusion region and the third diffusion region respectively. The first, the second and the third extra diffusion region are not disposed within the critical dimension region.
Abstract:
The invention provides a layout pattern of static random access memory, which comprises a plurality of fin structures on a substrate, a plurality of gate structures on the substrate and spanning the fin structures to form a plurality of transistors distributed on the substrate. The transistors include a first pull-up transistor (PU1), a first pull-down transistor (PD1), a second pull-up transistor (PU2) and a second pull-down transistor (PD2), a first access transistor (PG1), a second access transistor (PG2), a first read port transistor (RPD) and a second read port transistor (RPG). The gate structure of the first read port transistor (RPD) is connected to the gate structure of the first pull-down transistor (PD1), wherein a drain of the first pull-down transistor (PD1) is connected to a first voltage source Vss1, and a drain of the first read port transistor (RPD) is connected to a second voltage source Vss2.