ROAD CONDITION DEEP LEARNING MODEL

    公开(公告)号:US20220292402A1

    公开(公告)日:2022-09-15

    申请号:US17828196

    申请日:2022-05-31

    Applicant: Waymo LLC

    Abstract: The technology relates to using on-board sensor data, off-board information and a deep learning model to classify road wetness and/or to perform a regression analysis on road wetness based on a set of input information. Such information includes on-board and/or off-board signals obtained from one or more sources including on-board perception sensors, other on-board modules, external weather measurement, external weather services, etc. The ground truth includes measurements of water film thickness and/or ice coverage on road surfaces. The ground truth, on-board and off-board signals are used to build the model. The constructed model can be deployed in autonomous vehicles for classifying/regressing the road wetness with on-board and/or off-board signals as the input, without referring to the ground truth. The model can be applied in a variety of ways to enhance autonomous vehicle operation, for instance by altering current driving actions, modifying planned routes or trajectories, activating on-board cleaning systems, etc.

    LOCALIZATION ADAPTATION BASED ON WEATHER ESTIMATION

    公开(公告)号:US20220221280A1

    公开(公告)日:2022-07-14

    申请号:US17708477

    申请日:2022-03-30

    Applicant: Waymo LLC

    Abstract: Aspects of the disclosure provide for localizing a vehicle. In one instance, a weather condition in which the vehicle is currently driving may be identified. A plurality of sensor inputs including intensity information, elevation information, and radar sensor information may be received. For each of the plurality of sensor inputs, an alignment score is determined by comparing the intensity information, elevation information, and radar sensor information to a corresponding pre-stored image for each of the intensity information, the elevation information, and the radar sensor information. A set of weights for the plurality of sensor inputs may be determined based on the identified weather condition. The alignment scores may then be combined using the set of weights in order to localize the vehicle.

    Localization adaptation based on weather estimation

    公开(公告)号:US11320272B2

    公开(公告)日:2022-05-03

    申请号:US16922052

    申请日:2020-07-07

    Applicant: Waymo LLC

    Abstract: Aspects of the disclosure provide for localizing a vehicle. In one instance, a weather condition in which the vehicle is currently driving may be identified. A plurality of sensor inputs including intensity information, elevation information, and radar sensor information may be received. For each of the plurality of sensor inputs, an alignment score is determined by comparing the intensity information, elevation information, and radar sensor information to a corresponding pre-stored image for each of the intensity information, the elevation information, and the radar sensor information. A set of weights for the plurality of sensor inputs may be determined based on the identified weather condition. The alignment scores may then be combined using the set of weights in order to localize the vehicle.

    ROAD CONDITION DEEP LEARNING MODEL

    公开(公告)号:US20210383269A1

    公开(公告)日:2021-12-09

    申请号:US16893664

    申请日:2020-06-05

    Applicant: Waymo LLC

    Abstract: The technology relates to using on-board sensor data, off-board information and a deep learning model to classify road wetness and/or to perform a regression analysis on road wetness based on a set of input information. Such information includes on-board and/or off-board signals obtained from one or more sources including on-board perception sensors, other on-board modules, external weather measurement, external weather services, etc. The ground truth includes measurements of water film thickness and/or ice coverage on road surfaces. The ground truth, on-board and off-board signals are used to build the model. The constructed model can be deployed in autonomous vehicles for classifying/regressing the road wetness with on-board and/or off-board signals as the input, without referring to the ground truth. The model can be applied in a variety of ways to enhance autonomous vehicle operation, for instance by altering current driving actions, modifying planned routes or trajectories, activating on-board cleaning systems, etc.

    Road condition deep learning model

    公开(公告)号:US12210947B2

    公开(公告)日:2025-01-28

    申请号:US18238741

    申请日:2023-08-28

    Applicant: Waymo LLC

    Abstract: The technology relates to using on-board sensor data, off-board information and a deep learning model to classify road wetness and/or to perform a regression analysis on road wetness based on a set of input information. Such information includes on-board and/or off-board signals obtained from one or more sources including on-board perception sensors, other on-board modules, external weather measurement, external weather services, etc. The ground truth includes measurements of water film thickness and/or ice coverage on road surfaces. The ground truth, on-board and off-board signals are used to build the model. The constructed model can be deployed in autonomous vehicles for classifying/regressing the road wetness with on-board and/or off-board signals as the input, without referring to the ground truth. The model can be applied in a variety of ways to enhance autonomous vehicle operation, for instance by altering current driving actions, modifying planned routes or trajectories, activating on-board cleaning systems, etc.

Patent Agency Ranking