摘要:
An etch-stop layer is selectively provided between layers of a multiple-layered circuit in a selective manner so as to allow for outgassing of impurities during subsequent fabrication processes. The etch-stop layer is formed over an underlying stud so as to serve as an alignment target during formation of an overlying stud formed in an upper layer. In this manner multiple-layered circuits, for example memory devices, can be fabricated in relatively dense configurations.
摘要:
An etch-stop layer is selectively provided between layers of a multiple-layered circuit in a selective manner so as to allow for outgassing of impurities during subsequent fabrication processes. The etch-stop layer is formed over an underlying stud so as to serve as an alignment target during formation of an overlying stud formed in an upper layer. In this manner multiple-layered circuits, for example memory devices, can be fabricated in relatively dense configurations.
摘要:
A conductive portion connects a lower conductive layer formed on a semiconductor substrate provided in a first interlayer insulating layer to an upper conductive layer formed on the lower conductive layer, and provided in a second interlayer insulating layer. This portion is divided into at least one plug and a pad. At least one plug is formed in a first interlayer insulating layer and the lower part of a second interlayer insulating layer. The second interlayer insulating layer is divided into a plurality of interlayer insulating layers so that upper and lower widths of the divided plugs formed in the divided portion of the second interlayer insulating layer are not greatly different from each other. The pad formed on the upper portion of the second interlayer insulating layer has an upper width such that the upper conductive layer connected to the pad is not undesirably connected to an adjacent upper conductive layer via the pad.
摘要:
An etch-stop layer is selectively provided between layers of a multiple-layered circuit in a selective manner so as to allow for outgassing of impurities during subsequent fabrication processes. The etch-stop layer is formed over an underlying stud so as to serve as an alignment target during formation of an overlying stud formed in an upper layer. In this manner multiple-layered circuits, for example memory devices, can be fabricated in relatively dense configurations.
摘要:
An etch-stop layer is selectively provided between layers of a multiple-layered circuit so as to allow for outgassing of impurities during subsequent fabrication processes. The etch-stop layer is formed over an underlying stud so as to serve as an alignment target during formation of an overlying stud formed in an upper layer to be coupled to the underlying stud. In this manner multiple-layered circuits, for example memory devices, can be fabricated in relatively dense configurations.
摘要:
A conductive portion connects a lower conductive layer formed on a semiconductor substrate provided in a first interlayer insulating layer to an upper conductive layer formed on the lower conductive layer, and provided in a second interlayer insulating layer. This portion is divided into at least one plug and a pad. At least one plug is formed in a first interlayer insulating layer and the lower part of a second interlayer insulating layer. The second interlayer insulating layer is divided into a plurality of interlayer insulating layers so that upper and lower widths of the divided plugs formed in the divided portion of the second interlayer insulating layer are not greatly different from each other. The pad formed on the upper portion of the second interlayer insulating layer has an upper width such that the upper conductive layer connected to the pad is not undesirably connected to an adjacent upper conductive layer via the pad.
摘要:
A conductive portion connects a lower conductive layer formed on a semiconductor substrate provided in a first interlayer insulating layer to an upper conductive layer formed on the lower conductive layer, and provided in a second interlayer insulating layer. This portion is divided into at least one plug and a pad. At least one plug is formed in a first interlayer insulating layer and the lower part of a second interlayer insulating layer. The second interlayer insulating layer is divided into a plurality of interlayer insulating layers so that upper and lower widths of the divided plugs formed in the divided portion of the second interlayer insulating layer are not greatly different from each other. The pad formed on the upper portion of the second interlayer insulating layer has an upper width such that the upper conductive layer connected to the pad is not undesirably connected to an adjacent upper conductive layer via the pad.
摘要:
An etch-stop layer is selectively provided between layers of a multiple-layered circuit in a selective manner so as to allow for outgassing of impurities during subsequent fabrication processes. The etch-stop layer is formed over an underlying stud so as to serve as an alignment target during formation of an overlying stud formed in an upper layer. In this manner multiple-layered circuits, for example memory devices, can be fabricated in relatively dense
摘要:
An improved source/drain junction configuration in a metal-oxide semiconductor transistor is provided, as well as a novel method for fabricating this junction. This configuration employs gate double sidewall spacers in the peripheral region and gate single sidewall spacers in the cell array region. The double sidewall spacers are advantageously formed to suppress the short channel effect, to prevent current leakage, and to reduce sheet resistance. The insulating layer used to form the second spacers in the peripheral region remains in the cell array region and serves as an etching stopper during the etching step of interlayer insulating layer for contact opening formation and also serves as a barrier layer during the step of silicidation formation. As a result the fabrication process of the resulting device is simplified.
摘要:
A method for fabricating a semiconductor device with different gate oxide layers is provided. In this method, oxidation is controlled in accordance with the active area dimension so that the oxide grows more thinly at a wider active width in a peripheral region, and grows more thickly at a narrower active width in a cell array region. In this method, a gate pattern is formed over a semiconductor substrate having different active areas. Gate spacer are formed and an active-dimension-dependant oxidation process is then performed to grow oxide layers of different thicknesses in the cell array region and the peripheral region.