摘要:
Provided are a method for forming a cathode active material powder for a lithium secondary cell, and a cathode active material powder prepared using the method. According to the method, a coating layer consisting of a combination of a water-soluble polymer and a metal oxide may be formed on the particle surface of the cathode active material, thereby forming a uniform thickness of the coating layer. Thus, the elution of manganese may be prevented, thereby improving the capacity of the cathode active material and providing excellent cycle characteristics.
摘要:
Provided is a method of designing an electrolyte composition including a nonaqueous organic solvent mixture and a lithium salt to obtain an optimal composition ratio of components of the electrolyte composition for a high charging/high-output discharging secondary battery. The method includes: selecting components of the nonaqueous organic solvent mixture; determining composition ratio ranges of the selected components satisfying such conditions that an average dielectric constant, an average viscosity, and an average boiling point satisfy predetermined boundary values; dividing the ranges of the composition ratios into a plurality of groups; selecting a representative composition ratio of each of the groups; adding a lithium salt to a nonaqueous organic solvent mixture having the representative composition ratio to prepare an electrolyte composition; and measuring properties of the electrolyte composition to determine a composition ratio of an electrolyte composition having predetermined properties.
摘要:
A lithium rechargeable battery includes a cathode plate having a cathode current collector layer; and a cathode layer composed of particles of a cathode active material; an anode plate that is spaced apart from the cathode plate and having an anode current collector layer and an anode layer composed a mixed anode active material that is a mixture including particles of a spinel lithium titanium oxide (Li4Ti5O12) and nanotubes of a lithium titanium oxide (LixTiO2, where 0
摘要翻译:锂可充电电池包括具有阴极集电器层的阴极板; 以及由正极活性物质的粒子构成的阴极层; 阳极板与阴极板间隔开并具有阳极集电器层和阳极层,阳极层由混合阳极活性材料构成,该混合阳极活性材料是包含尖晶石锂钛氧化物(Li 4 Ti 5 O 12)的颗粒和锂二氧化钛的纳米管的混合物 (LixTiO 2,其中0
摘要:
Provided are an anode in which lithium metal powder and carbon powder are physically mixed with each other to form a composite and the composite is applied as an anode layer, and a lithium metal secondary battery including the anode. The anode of the present invention may suppress the formation of lithium dendrites and the change in volume of cells generated in a rechargeable battery which uses a lithium metal anode and significantly improve the cycle life-span of a lithium metal secondary battery by physically mixing lithium metal particles and carbon particles having an equivalent average particle diameter with each other to be applied as an anode layer.
摘要:
Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery. The composite polymer matrix structure can increase mechanical properties. The introduction of the lithium cationic single-ion conducting inorganic filler can provide excellent ionic conductivity and high rate discharge characteristics.
摘要:
Provided are a vacuum-sealing-type flexible-film primary battery and a method of manufacturing the same. The primary battery includes a battery assembly comprising a positive electrode plate including a positive electrode collector having a first conductive carbon layer disposed on a surface-treated inner surface of a first pouch and a positive electrode layer disposed on the first conductive carbon layer of the positive electrode collector, a negative electrode plate including a negative electrode collector having a second conductive carbon layer disposed on a surface-treated inner surface of a second pouch and a negative electrode layer disposed on the second conductive carbon layer of the negative electrode collector, and an adhesion/post-injection polymer electrolyte layer interposed between the positive electrode plate and the negative electrode plate, wherein the battery assembly is completely sealed. The flexible-film primary battery may employ the pouch as a collector film to improve flexibility. Also, the flexible-film primary battery may be completely sealed using the pouch to improve a retention period and cell performance. Furthermore, the flexible-film primary battery may be manufactured using a screen printing technique, thereby facilitating a roll-to-roll sequential process.
摘要:
Provided is a dye-sensitized solar cell (DSC). The DSC including a working electrode and a counter electrode facing the working electrode includes a polymer film having a mirror reflection characteristic and attached to the outside of the counter electrode. Since the polymer film having a mirror reflection characteristic is employed, use of light can be increased, and incident photon-to-current conversion efficiency (IPCE) can be improved.
摘要:
Provided are a method of manufacturing a cathode active material for a lithium battery, and a cathode active material obtained by the method. The method includes forming a precursor of a one-dimensional nanocluster manganese dioxide with a chestnut-type morphology, inserting lithium into the formed precursor and synthesizing a one-dimensional nanocluster cathode active material particle with a chestnut morphology, coating a water-soluble polymer on a surface of the cathode active material particle, adsorbing a metal ion to the surface of the cathode active material particle coated with the water-soluble polymer, and sintering the cathode active material particle to obtain the one-dimensional nanocluster cathode active material with a chestnut morphology. The cathode active material manufactured by the above method is a one-dimensional nanocluster with a chestnut-type morphology, which has a uniform-thick metal oxide layer on its surface, thereby ensuring an improved capacity of the cathode active material and an excellent cycle characteristic.
摘要:
Provided is a method of producing a nanoparticle-filled phase inversion polymer electrolyte. The method includes mixing a nanoparticle inorganic filler and a polymer with a solvent to obtain a slurry; casting the obtained slurry to form a membrane; obtaining an inorganic nanoparticle-filled porous polymer membrane by developing internal pores in the cast membrane using a phase inversion method; and impregnating the inorganic nanoparticle-filled porous polymer membrane with an electrolytic solution. The polymer electrolyte produced using the method can be used in a small lithium secondary battery having a high capacity, thereby providing an excellent battery property.