摘要:
A method of making a Silicon-on-Insulator (SOI) transistor includes forming a body layer that is fully depleted when the SOI transistor is in a conductive state and forming first p+ regions adjacent each of the SOI transistor source/drain regions to adjust the SOI transistor threshold voltage. To suppress punch-through current, an additional implant step is carried out to form second p+ regions adjacent first implant regions.
摘要:
A fully depleted SOI FET and methods of formation are disclosed. The FET includes a layer of semiconductor material disposed over an insulating layer, the insulating layer disposed over a semiconductor substrate. A source, a drain and a body disposed between the source and the drain are formed from the layer of semiconductor material. The layer of semiconductor material is etched such that a thickness of the body is less than a thickness of the source and the drain and such that a recess is formed in the layer of semiconductor material over the body. A gate is formed at least in part in the recess. The gate defines a channel in the body and includes a gate electrode spaced apart from the body by a high-K gate dielectric.
摘要:
A Silicon-on-Insulator (SOI) transistor includes an intrinsic body layer that is fully depleted when in a conductive state. The transistor includes a shallow pocket of dopants adjacent to each of its source and drain regions. The shallow pockets are of a conductivity type opposite to that of the source and drain regions and raise the threshold voltage of the transistor. The transistor also includes a deep pocket of dopants adjacent each of the source and drain regions to suppress the punch-through current.
摘要:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
摘要:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
摘要:
One illustrative device disclosed herein includes at least one fin comprised of a semiconducting material, a layer of gate insulation material positioned adjacent an outer surface of the fin, a gate electrode comprised of graphene positioned on the layer of gate insulation material around at least a portion of the fin, and an insulating material formed on the gate electrode.
摘要:
A double gate metal-oxide semiconductor field-effect transistor (MOSFET) includes a fin, a first gate and a second gate. The first gate is formed on top of the fin. The second gate surrounds the fin and the first gate. In another implementation, a triple gate MOSFET includes a fin, a first gate, a second gate, and a third gate. The first gate is formed on top of the fin. The second gate is formed adjacent the fin. The third gate is formed adjacent the fin and opposite the second gate.
摘要:
According to one exemplary embodiment, a p-channel germanium on insulator (GOI) one transistor memory cell comprises a buried oxide (BOX) layer formed over a bulk substrate, and a gate formed over a gate dielectric layer situated over a germanium layer formed over the buried oxide (BOX) layer. A source region is formed in the germanium layer adjacent to a channel region underlying the gate and overlaying the BOX layer, and a drain region is formed in the germanium layer adjacent to the channel region. The source region and the drain region are implanted with a p-type dopant. In one embodiment, a p-channel GOI one transistor memory cell is implemented as a capacitorless dynamic random access memory (DRAM) cell. In one embodiment, a plurality of p-channel GOI one transistor memory cells are included in a memory array.
摘要:
A graphene-based device is formed with a trench in one or more layers of material, a graphene layer within the trench, and a device structure on the graphene layer and within the trench. Fabrication techniques includes forming a trench defined by one or more layers of material, forming a graphene layer within the trench, and forming a device structure on the graphene layer and within the trench.
摘要:
A method for doping fin structures in FinFET devices includes forming a first glass layer on the fin structure of a first area and a second area. The method further includes removing the first glass layer from the second area, forming a second glass layer on the fin structure of the first area and the second area, and annealing the first area and the second area to dope the fin structures.