摘要:
An ablation apparatus has a balloon that is inserted into an organ of a body and ablates all or a selected portion of the inner layer of the organ. Electrolytic solution fills the balloon, and the balloon includes a plurality of apertures from which electrolytic solution flows from the balloon. The flow rate of electrolytic solution is dependent on the pressure applied to the balloon by the electrolytic solution. A conforming member, with a conductive surface and a back side, is made of a material that substantially conforms, to a shape of the inner layer of the organ and delivers the electrolytic solution and RF energy through the conductive surface to the inner layer. Advantageously, difficult to access areas are reached with the inclusion of the conforming member. Optionally positioned between the conforming member and the balloon is a porous membrane. A printed circuit is printed in or on the conforming member and delivers RF energy to selected sections of the inner layer. The printed circuit provides for the monitoring of impedance, temperature and circuit continuity. Additionally, the printed circuit can be multiplexed.
摘要:
A method of medical ablation of tissue accessible thorough the mouth or nose is disclosed having the steps of: a) inserting a probe through the mouth into the oral cavity, wherein said probe has a disposable electrode enclosed within an insulating sleeve bendable therewith; b) steering said probe through the oral cavity into close proximity to the tissue; c) extending the disposable electrode and the insulating sleeve out of the probe and penetrating the tissue; and d) applying RF energy to the tissue surrounding the electrode to effect ablation of said tissue.
摘要:
A method of treating a sphincter provides a catheter means and an energy delivery device means coupled to the catheter means. The energy delivery device means has a tissue piercing distal end. The catheter means is introduced into an esophagus. A sphincter exterior surface is pierced with the energy delivery device means tissue piercing distal. The energy delivery device means tissue piercing distal end is advanced a sufficient distance in an interior of the sphincter to a tissue site. Energy is controllably delivered to the tissue site. Controlled cell necrosis is created in the sphincter to reduce a frequency of sphincter relaxation.
摘要:
A method of treating a sphincter provides a sphincter electropotential mapping device with a mapping electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter. Aberrant myoelectric activity of the sphincter is detected. Energy is delivered from the sphincter electropotential mapping device to treat the aberrant myoelectric activity of the sphincter.
摘要:
A medical probe device for contacting tissue within the body a catheter tube having a control end and a probe end. The probe end includes a housing having a port. An element is located within the housing that is movable between a first position confined within the housing and a second position extending through the port outside the housing. The element has a distal tip adapted to penetrate a tissue region during movement between the first and second position. The element comprises an electrode for emitting electromagnetic radio frequency energy into the tissue region, or cannula with an interior lumen for conveying fluid to and from the tissue region, or a sensor for sensing temperature conditions in the tissue region.
摘要:
An endocardial ablation and mapping apparatus is introduced into a heart chamber for mapping to detect arrhythmogenic foci, and ablate endocardium at the arrhythmogenic foci. An inflatable, flexible porous membrane is adapted to receive an electrolytic solution, and become inflated to substantially conform a conductive surface of the membrane to the wall of the heart chamber. A membrane support is surrounded by the membrane, and includes a sealed proximal end and a sealed distal end. Each end has an aperture formed therein defining a central lumen in the membrane support that permits blood flow through the support member and the heart chamber. The membrane support is attached to the membrane and is expanded to a non-distensible state when the membrane is inflated. A catheter, with a distal end, is attached to the membrane or the membrane support. The membrane and membrane support are introduced into the heart chamber by the catheter in a non-expanded state, and become expanded to an expanded state by inflating the membrane with the electrolytic solution. A plurality of treatment electrodes, defining a circuit, are formed on an exterior surface of the membrane support. An RF power source is coupled to the treatment electrodes, and a source of electrolytic solution is coupled to the membrane.
摘要:
A medical ablation method for reducing snoring wherein a flexible RF electrode wire surrounded by an insulating sleeve axially moveable thereon is inserted into an uvula; the sleeve is retracted to expose a predetermined portion of the electrode; and RF energy is applied to the uvula tissue through the electrode to cause internal lesions in the uvula and reduce snoring.
摘要:
An endocardial ablation apparatus, for introduction into a heart chamber formed by a wall, is provides. The ablation apparatus includes an inflatable, flexible porous membrane adapted to receive an electrolytic solution, and become inflated to substantially conform an exterior surface of the membrane to the wall of the heart chamber. An inner lumenal member is surrounded by and attached to the membrane. The inner lumenal member includes a lumen that permits blood flow through the inner lumenal member and heart chamber. An introducer catheter introduces the membrane and inner lumenal member into a selected heart chamber. A plurality of RF electrodes define a circuit positioned in the membrane or on an exterior surface of the inner lumenal member. The RF electrodes transfer thermal energy to the electrolytic solution. The electrolytic solution is the electrode that provides ablation of a selected site of the heart chamber. An RF power source is coupled to the RF electrodes. A source of electrolytic solution is coupled to the membrane.
摘要:
An ablation apparatus for ablating an inner layer in an organ or lumen of a body, or any desired thin layer, includes an expandable member made of a material with a porous exterior surface. An electrolytic solution, housed in an interior of the expandable member, releases electrolytic solution through the porous exterior surface. A conforming member, which can be an open cell foam material, has an RF conductive surface, and a back side in a surrounding relationship to an exterior surface of the expandable member. Further, the conforming member includes non-zone areas that have a first porosity rate for delivering electrolytic solution to the inner layer. The conforming member also includes a zone for housing each RF electrode and electrolytic solution. Zones have a second porosity rate that is less than the first porosity rate, thus permitting electrolytic solution to pass through the non-zone areas at a faster rate than in the zones. The zones provide an area where electrolytic solution is heated to a higher temperature, due to the differences in porosity with the non-zones. With the combination of the electrode and the heated electrolytic solution in each zone, a larger electrode is created, and there is a more effective, and even application of both RF and thermal energy to the tissue site, such as the endometrium.
摘要:
A method and system for treating aneurysms by applying RF energy to collagen. A catheter is disposed near the aneurysm and collagen is exuded into or near the aneurysm. RF energy is applied, using the same catheter or a second catheter, to the collagen, causing the collagen to harden and cover the weak region of the blood vessel wall, and providing a base onto which epithelial cells of the blood vessel may grow. The catheter comprises an electrophysiology catheter, including a ring electrode preferably disposed to deliver between about 5 and about 30 watts of RF energy at a frequency preferably between about 450 and about 600 Megahertz, to apply sufficient energy to cause the collagen to harden while avoiding damage to surrounding tissue.