Abstract:
A variable displacement piston pump, having: a housing, a pivot assembly to pivot between minimal and maximum pivot angles; a pump cover defining an actuator bore with an actuator piston, an actuator arm extending from the actuator piston to the pivot assembly; and an electronic control unit (ECU) coupled to the pump, the ECU having: a pump controller, a linear variable differential transducer (LVDT) coupled to the pump controller and the actuator piston, and an electrohydraulic solenoid valve (EHSV) coupled to the pump controller, the ECU is configured to: determine a pivot differential for the pivot assembly between a target pivot angle and a current pivot angle; determine a position differential for the actuator piston, corresponding to the pivot differential of the pivot assembly; control the EHSV to move the actuator piston by the position differential; and determine, from the LVDT, that the actuator piston moved by the position differential.
Abstract:
Control system and control method of a variable displacement hydraulic pump wherein the system includes a detection sensor for detection of the actually set displacement and a control unit for current control of a couple of solenoids controlling displacement increase and decrease.
Abstract:
A zero turn mower vehicle 10 includes left and right hydrostatic transmissions 11a, 11b driving wheels 15a, 15b. The transmissions 11a, 11b each include a swashplate type axial piston hydraulic pump 17 having a swashplate 22. A system 12 and method controls each pump 17. A controller 31 receives input signals and provides output signals to electric motors 33a, 33b to control each swashplate 22. Operator interface input devices 30a, 30b provide inputs to controller 31. Angle sensors 35a, 35b provide additional inputs to controller 31. Displacement amplifiers 36a, 36b amplify displacement of each swashplate 22, and torque amplifiers 34a, 34b amplify torque of electric motors 33a, 33b.
Abstract:
The present invention relates to a device for controlling a hydraulic pump of construction machinery. The device has a first pump supplying working fluid through a swing control valve to a swing motor, and a second pump supplying working fluid through a work tool control valve to a work tool actuator, and includes: a first tilting angle control unit for controlling a discharge flow of the first pump by controlling a tilting angle of the first pump according to an input pump control signal; and a controller deducting a discharge pressure (P2) of the second pump from a discharge pressure (P1) of the first pump to calculate a pump difference pressure-(P1-P2), comparing the calculated pump difference pressure (P1-P2) to a reference difference pressure and, when the calculated pump difference pressure (P1-P2) is greater than the reference difference pressure, outputting the pump control signal to the first tilting angle control unit to make the discharge pressure (P1) of the first pump equal to or less than a first reference pressure that is less than or equal to a swing relief pressure.
Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
The invention relates to a device (1) for state monitoring in hydrostatic displacement units (2), in particular in axial piston machines (3) operated as a pump or as a motor. The device (1) comprises an acquisition unit (4) with a multiplicity of sensors (5) which are attached to the hydrostatic displacement unit (2) and serve to acquire monitoring data (6) and operating data (7), and an evaluating unit (8) which has a device (9) for analysing the monitoring data in the frequency range and a device (10) for analysing the monitoring data in the time range. A diagnostic unit (11) with an output unit (13) is connected to the evaluating unit (8).
Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
A control system that can be used on a hydrostatic pump has a feedback sensor to detect the angle of a swashplate. From the information gathered by the feedback sensor about the swashplate and another set command, this information is sent to a microprocessor. The microprocessor then uses an algorithm to create an output signal and also sends out a superimposed dither signal. This dithered output signal is then received by a pressure control that causes a dither servo pressure in a servo system. Because of the dither pressure the servo system adjusts the position of the swashplate.
Abstract:
The invention relates to an electro-hydraulic control system for a power drive unit having a wobbler controlled variable displacement hydraulic motor wherein the electro-hydraulic control system causes the displacement of the hydraulic motor to match a load to be driven by a power drive unit output shaft coupled to the motor. The system results in the hydraulic motor displacement matching the load as a combined function of the input command signal, the actual wobbler position, as well as the velocity and position of the power drive unit output shaft.
Abstract:
A device for accurately maintaining a constant volumetric proportion between liquids delivered to a mixing point. The device includes means for positively metering the volume of a principal liquid; means for controllably pumping a secondary liquid, means for utilizing the output of the metering apparatus to operate and control the pumping apparatus; means for passing the secondary liquid to and away from the pumping apparatus; means for manually establishing a desired volumetric proportion between the principal and secondary liquids, and means for registering the volume of primary liquid which has passed through the positive metering apparatus. The device is particularly useful in applications wherein the volumetric proportion of a principal liquid to a secondary liquid in a mixture must be accurately controlled.