Abstract:
A method and system for co-ordinating control of a plurality of sensorless devices. Each device includes a communication subsystem and configured to self-detect one or more device properties, the device properties resulting in output having one or more output properties. The method includes: detecting inputs including the one or more device properties of each device, correlating, for each device, the detected one or more device properties to the one or more output properties, and co-ordinating control of each of the devices to operate at least one of their respective device properties to co-ordinate one or more output properties for the combined output to achieve a setpoint. In some example embodiments, the setpoint can be fixed, calculated or externally determined.
Abstract:
A dual pump unit having a pair of pumps that provide parallel hydraulic paths, and are configured to operate concurrently in opposite rotational directions. The dual pump unit has a sealed casing which includes a suction flange, two volutes in hydraulically parallel configuration, and a discharge flange. The pair of pumps are located within a respective volute of the casing and, in an example, are radially inline and horizontally inline. The casing may include a flattened bottom. Each pump may include a touchscreen for configuration of the respective pump. The pumps are controllable to circulate a circulating medium to collectively provide output to source a load.
Abstract:
An industrial fluid circulation system and method has at least one fluid circulation circuit in an industrial process, such as an HVAC system. The at least one fluid circulation circuit includes a plurality of pumps connected in parallel to circulate a fluid through the at least one fluid circulation circuit, with at least two of the parallel connected pumps operating at all given loads. A separate motor drives each pump and a speed control is used to vary the speed of each motor to thereby vary the pumping capacity of each parallel connected pump. A load detector is provided to sense operating loads on the system, and each operating pump runs simultaneously at all loads, relative to a maximum pump speed, at a substantially similar reduced speed, a predetermined equal reduced speed or a predetermined almost equal reduced speed.
Abstract:
A device and a method for operating multiple centrifugal pumps are disclosed. The device can include a communication interface for receiving as at least one input information, an instantaneous pressure drop and an instantaneous flow rate per pump or speed of the centrifugal pumps, and for transmitting output information to the centrifugal pumps, where the output information reflects a reference value for the number of centrifugal pumps to be operated in parallel. The device can contain a data storage unit and a processing unit, which determine from input information and additional information an instantaneous efficiency, a first expected efficiency under the assumption that the actual number is reduced by one, and a second expected efficiency under the assumption that the actual number is increased by one, and which can generate the reference value depending on which of the instantaneous or first expected or second expected efficiencies has a highest value.
Abstract:
A manifold trailer and pairing system are disclosed. The pairing system has a non-transitory computer readable medium storing processor executable code. The processor executable code causes a processor to receive identification data indicative of a first low pressure valve and a second low pressure valve connected to a low pressure manifold of a manifold trailer; receive identification data indicative of a first high pressure valve and a second high pressure valve connected to a high pressure manifold of the manifold trailer; and receive identification data indicative of a plurality of pumps. The processor determines a first association indicative of a first fluid connection between the first low pressure valve and a selected pump and a second association indicative of a second fluid connection between the selected pump and a selected high pressure valve. The processor populates the non-transitory computer readable medium with information indicative of the first and second associations.
Abstract:
Control method and control apparatus of the electric motors of a pump unit of a fire protection system, which fire protection system comprises spray nozzles (112), a pump unit, a control system with pressure-measuring means, and piping (105) for conducting extinguishing medium from the pump unit to the spray nozzles, which pump unit comprises pump drives, each of which comprises a pump (101) and an AC electric motor (102, 203a-203f) rotating it, which AC motor can be connected to an AC electricity network via a contactor device (206a-f), in which pump unit the AC electric motors are controlled on the basis of the pressure to be measured in the piping, and in which one of the electric motors (102, 203a-203f) at a time is controlled by means of a frequency converter (108, 204) such that the motor to be controlled with the frequency converter operates as a motor that under the control of the frequency converter steplessly adjusts pressure and the others are started up into the network as steplessly adjusting motors.
Abstract:
A flood control system for use in a structure having a basement floor below ground level is provided. The flood control system comprises a sump, a main pump positioned in the sump, and a secondary pump positioned in the sum. The secondary pump is raised relative to the main pump to a predetermined elevation. The main pump is energized when a height of water within the sump is at a first level. The secondary pump is energized when a height of water within the sump reaches a second, higher level and is de-energized when a height of water within the sump drops to a third level. A cover is releasably mounted to the sump. The cover includes a first section for covering the main pump and a separate second section for covering the secondary pump. At least one of the first and second sections is hingedly mounted to the sump. A controller is operatively connected to the main pump and the secondary pump. The controller is responsive to water level within the sump to selectively energize at least one of the main pump and the secondary pump.
Abstract:
A hydronic distribution system includes self-regulating valves networked together and operable to share valve temperature and valve position information with a microprocessor or other type of controller. The microprocessor runs one or more algorithms that process the temperatures and positions of the valves and then computes a desired speed for one or more variable speed pumps within the system. Controlling the pumps to operate at the desired speed and still maintain the correct amount of process fluid flow needed by the system reduces the overall energy use of the hydronic distribution system, saves on the operational lives of the pumps, and increases system efficiency.
Abstract:
A modular header body is described for distributing fluid to an individually pumped fluid circuit. The modular header body has a valve to selectively isolate the header body's suction chamber from its volute, which permits a pump motor to be disconnected from the header body while the valve is closed. Each modular header body is constructed so that adjacent header bodies can be connected to each other to form a common suction chamber. Each header body's isolation valve operates independently so that the volute of one header body can be isolated from the common suction chamber without affecting fluid supply to the other header bodies.
Abstract:
The present invention discloses a system of energy-efficient and constant-pressure fluid-transport machines coupled in parallel, which can flexibly and massively provide gas and water to every fabrication unit. The system of the present invention comprises: variable-frequency centrifugal fluid-transport machines, pressure gauges, power meters, flow meters, and controllers. The performance curves of the abovementioned system of fluid-transport machines coupled in parallel and the system impedance curves of the loads are analyzed theoretically and built in the controllers together with the equal-efficiency curves provided by the manufacturer. When the system is operating, the data detected by the pressure gauges, power meters, and flow meters are compared with the built-in data to obtain the optimal energy-efficient conditions as the operational criteria of the system of the present invention.