摘要:
The present invention suppresses leakage of combustion gas from a contact surface. A cylinder head (20) is attached to a cylinder block. The surface (26) of the side of the cylinder head (20) that is attached to the cylinder block includes a first region (AH1) and a second region (AH2) that has higher hardness than the first region (AH1).
摘要:
The invention consists of a gray cast iron comprising carbon, silicon, vanadium, manganese, nickel, chromium, molybdenum, copper, sulfur, phosphorous, tin and titanium, wherein: the percentage by weight of carbon is from 3.70 to 3.90%; the percentage by weight of silicon is from 1.30 to 2.10%; the percentage by weight of vanadium is from 0.10 to 0.15%; the percentage by weight of manganese is from 0.60 to 0.90%; the percentage by weight of nickel is from 0.05 to 0.50%; the percentage by weight of chromium is from 0.20 to 0.35%; the percentage by weight of molybdenum is no more than 0.10%; the percentage by weight of copper is no more than 0.35%; the percentage by weight of sulfur is less than 0.10%; the percentage by weight of phosphorous is less than 0.10%; the percentage by weight of tin is less than 0.10%; the percentage by weight of titanium is no more than 0.01%; the remainder by weight being iron.
摘要:
A machine component, made of steel or cast iron and having a circular hole that opens in a first surface, includes a plurality of first quench-hardened regions that include the first surface and are arranged apart from each other along a first circle surrounding the hole when viewed in a plane in a direction perpendicular to the first surface, and a base region that is a region other than the first quench-hardened regions.
摘要:
A method and system for processing an engine block that includes a cylinder liner. The engine block having a first material with different coefficient of thermal expansion than a second material forming the cylinder liner. The method includes providing an insulating barrier to the cylinder liner, and quenching the engine block. The insulating barrier provides a lower cooling rate to the second material forming the cylinder liner than a cooling rate for the first material forming the engine block during the quenching.
摘要:
Heat resistant spheroidal graphite cast iron having an improved high temperature tensile strength includes carbon (C) in a range of 3.2-3.4 wt %, silicon (Si) in a range of 4.3-4.8 wt %, manganese (Mn) in a range of 0.2-0.3 wt %, molybdenum (Mo) in a range of 0.8-1.0 wt %, vanadium (V) in a range of 0.4-0.6 wt %, chrome (Cr) in a range of 0.2-0.4 wt %, niobium (Nb) in a range of 0.2-0.4 wt %, inevitable impurities, and a remainder of iron (Fe) based on a total weight of the heat resistant spheroidal graphite cast iron. The heat resistant spheroidal graphite cast iron further includes barium (Ba) in a range of 0.0045-0.0075 wt %. A content ratio of chrome (Cr) and barium (Ba) (Cr/Ba) is in a range from about 26 to about 89.
摘要:
A high-strength, high-damping-capacity cast iron having both a high strength and high vibration damping capacity is provided.The high-strength, high-damping-capacity cast iron is obtained by a method including performing a graphite spheroidizing treatment on a molten metal, and consists of 2% to 4% of C, 1% to 5% of Si, 0.2% to 0.9% of Mn, 0.1% or less of P, 0.1% or less of S, 3% to 7% of Al, 0% to 1% of Sb, 0% to 0.5% of Sn, 0.02% to 0.10% of Mg, 01% to 0.5% of RE (Ce, La), Fe as balance, and unavoidable impurity.
摘要:
A scroll compressor includes scroll members that are made of austempered grey iron in whole or in part. The austempering process can increases fatigue strength and toughness of a grey iron while maintaining its good machinability and vibration damping characteristics. Use of austempered grey iron scroll members allows the scroll compressor to improve its capacity, efficiency, and durability.
摘要:
A nodular graphite cast iron, a method for fabricating a vane for a rotary compressor using nodular graphite cast iron, and a vane for a rotary compressor using the same are provided. The nodular graphite cast iron includes 3.4 wt % to 3.9 wt % of carbon (C), 2.0 wt % to 3.0 wt % of silicon (Si), 0.3 wt % to 1.0 wt % of manganese (Mn), 0.1 wt % to 1.0 wt % of chromium (Cr), 0.04 wt % to 0.15 wt % of titanium (Ti), less than 0.08 w % of phosphorus (P), less than 0.025 wt % of sulphur (S), 0.03 wt % to 0.05 wt % of magnesium (Mg), 0.02 wt % to 0.04 wt % of rare earth resource, iron (Fe) and impurities as the remnants, and includes a bainite matrix structure, nodular graphite, and 15 vol % to 35 vol % of carbide.
摘要:
A casting of a white cast iron alloy and a method of producing the casting are disclosed. A white cast alloy is also disclosed. The casting has a solution treated microstructure that comprises a ferrous matrix of retained austenite and chromium carbides dispersed in the matrix, with the carbides comprising 15 to 60% volume fraction of the alloy. The matrix composition comprises: manganese: 8 to 20 wt %; carbon: 0.8 to 1.5 wt %; chromium: 5 to 15 wt %; and iron: balance (including incidental impurities).
摘要:
A method for treating a cast iron workpiece to increase a useful life thereof includes machining the workpiece to provide a finish surface thereon and deforming the finish surface of the workpiece by rubbing the finish surface against a blunt tool (80,80′), thereby forming a nanocrystallized surface layer (70). The workpiece is nitrocarburized, the nanocrystallized surface layer accelerating diffusion of nitrogen atoms and carbon atoms therethrough. The nitrocarburizing taking place: i) if the workpiece is stress relived prior to machining, for about 1 hour to about 2 hours at a temperature ranging from about 550° C. to about 570° C., or ii) if the workpiece is not stress relieved prior to machining, for about 5 hours to about 10 hours at a temperature ranging from about 370° C. to about 450° C. The nitrocarburizing renders the nanocrystallized surface layer into i) a friction surface, or ii) a corrosion-resistant surface.