摘要:
An example embodiment includes a communication module. The communication module includes a shell, a printed circuit board assembly (“PCBA”) at least partially positioned within the shell, an optical transmitter electrically coupled to the PCBA, an optical receiver electrically coupled to the PCBA, and a biasing assembly. The biasing assembly includes a latch cover configured to be attached to the shell, a slider, and a spring. The slider is configured to operate a latching mechanism that releasably connects the module to a host device through a mechanical connection. The slider includes a main body including a first end, an arm extending from the first end, and a stopper feature extending from the arm. The spring is positioned between the latch cover and the stopper feature to bias the latching mechanism.
摘要:
A circuit may include an input node configured to receive a signal and an output node configured to be coupled to a load. The circuit may also include a first circuit coupled between the input node and the output node. The first circuit may be configured to receive the signal and to drive the signal on the output node at a first voltage. The circuit may also include an active device coupled to the output node and a second circuit coupled to the active device and the input node. The second circuit may be configured to receive the signal and to drive the signal to the active device at a second voltage. The circuit may also include a tap circuit configured to selectively apply a modified version of the signal to the signal driven by the second circuit before the signal driven by the second circuit reaches the active device.
摘要:
An electromagnetic radiation shield for an electronic module. In one example embodiment, an EMR shield for an electronic transceiver module includes a conductive carrier sized and configured to surround a shell of an electronic transceiver module. The conductive carrier defines a plurality of extended elements located on at least one edge of the conductive carrier and an orientation element. Each extended element is configured to bias against the shell in order to create a physical and electrical contact between the conductive carrier and the shell. The orientation element is configured to engage a corresponding structure in the shell in order to correctly orient the conductive carrier with respect to the shell.
摘要:
Fiber optic connectors for use in connecting and aligning two optical fibers. In one example embodiment, a fiber optic connector includes a body, a cylindrical split sleeve at least partially positioned within the body, and a shell at least partially positioned within the body and surrounding the split sleeve. The body defines an internal port and an external port. The split sleeve defines a slot along the length of the split sleeve and has first and second open ends. The first end is configured to receive and grip a ferrule of an internal optical fiber and the second end is configured to receive and grip a ferrule of an external optical fiber. The portion of the shell surrounding the first end has a greater inside clearance than the portion of the shell surrounding the second end.
摘要:
Embodiments of the present invention provide a system for increasing an operational life of a VCSEL. The system can include control circuitry for reducing an amount of bias current at high temperatures and increasing a power of the laser at low temperatures. This control circuitry can further include at least one of a temperature sensor, a Field Programmable Gate Array, a read only memory module, and an electrically erasable programmable read only memory module (EEPROM). In alternate embodiments, the control circuitry can further include a lookup table that sets the bias current depending on a temperature of the laser. The laser can be part of an optoelectronic transceiver module which can include, by way of example and not limitation, SFP, XFP, X2, XAUI, XENPAK, XPAK, GBIC, 8G, 16G, and other optoelectronic modules.
摘要:
An optoelectronic transceiver includes an optoelectronic transmitter, an optoelectronic receiver, memory, and an interface. The memory is configured to store digital values representative of operating conditions of the optoelectronic transceiver. The interface is configured to receive from a host a request for data associated with a particular memory address, and respond to the host with a specific digital value of the digital values. The specific digital value is associated with the particular memory address received from the host. The optoelectronic transceiver may further include comparison logic configured to compare the digital values with limit values to generate flag values, wherein the flag values are stored as digital values in the memory.
摘要:
Systems and methods for an optical transceiver module to perform one or more diagnostic self-tests without the assistance of a host computing system. The optical transceiver module includes at least one processor, a persistent memory and a system memory. The persistent memory, which is coupled to the at least one processor, contains microcode. The microcode is loaded from the persistent memory to the system memory and executed by the at least one processor. The executed microcode causes the optical transceiver module to perform one or more diagnostic self-tests. The diagnostic result data of the one or more diagnostic self-tests is then stored in the persistent memory and is formatted for analysis. The formatted data may then be analyzed to ascertain the response of the optical transceiver to changes in its test environment.
摘要:
An optoelectronic transceiver includes an optoelectronic transmitter, an optoelectronic receiver, memory, and an interface. The memory is configured to store digital values representative of operating conditions of the optoelectronic transceiver. The interface is configured to receive from a host a request for data associated with a particular memory address, and respond to the host with a specific digital value of the digital values. The specific digital value is associated with the particular memory address received form the host. The optoelectronic transceiver may further include comparison logic configured to compare the digital values with limit values to generate flag values, wherein the flag values are stored as digital values in the memory.
摘要:
A TOSA can include: a light emitting element; and one or more heating elements thermally coupled to the light emitting element so as to provide a substantially constant heat generation profile and/or temperature profile across the TOSA during a light emitting element dormant period and a light emitting element firing period. The TOSA can include a controller operably coupled with the one or more heating elements so as to control the substantially constant heat generation profile and/or temperature profile. In one aspect, the one or more heating elements can include one or more dedicated heating elements. In one aspect, the one or more of the dedicated heating elements can include a resistor element or coil.
摘要:
An example embodiment includes a thermal conduction system for dissipating thermal energy generated by operation of an optical subassembly that disposed within a shell of a communication module. The thermal conduction system can include a thermally conductive flexible member that contacts the optical subassembly and to contact the shell of the communication module. By contacting the optical subassembly and the shell, the thermal energy generated by operation of the optical subassembly can transfer from the optical subassembly to the shell. The thermally conductive flexible member defines thermally conductive flexible member holes that correspond to pins extending from the optical subassembly. The pins pass through the thermally conductive flexible member holes enabling the thermally conductive flexible member to contact the optical subassembly.