Abstract:
In accordance with the present disclosure, disadvantages and problems associated with controlling signal transmission of a wireless communication device may be reduced. In accordance with an example embodiment of the present disclosure a method for controlling transmission of a wireless communication signal comprises sensing one or more signals indicative of a power level of a wireless communication signal. The power level of the wireless communication signal is amplified by a power amplifier according to an amplifier control signal. The method further comprises determining a change in the power level based on the one or more signals indicative of the power level. The change is associated with one or more perturbations of the amplifier control signal. The method also comprises adjusting transmission of the wireless communication signal according to the change in the power level.
Abstract:
Disclosed is an electrical connector assembly which comprises an insulative body, a PCB and a base. The insulative body comprises a plurality of first terminals, and the base comprises a plurality of second terminals. The first terminals and the second terminals are electrically connected through the PCB; wherein the base is disposed with a movable member. When the movable member is in an open status, an FFC is inserted into the base. When the movable member is in a close state, the movable member presses against a plurality of conductors of the FFC to establish an electrical connection with the second terminals.
Abstract:
A pneumatic control valve includes a first valve body, a pushing block, a rotating block, a second valve body, an end cover, and a piston. The first valve body defines a first gas inlet and a receiving hole. The first valve body forms a plurality of guiding ribs evenly positioned on the inner surface of the receiving hole away from the first gas inlet, and each of the guiding ribs forms an inclined surface at a distal end thereof. The pushing block and the rotating block are slidably received in the receiving hole. The second valve body is connected to an end of the first valve body adjacent to the receiving hole of the first valve body. The end cover is fastened on an end of the second valve body away from the first valve body. A pneumatic control system using the pneumatic control valve is also provided.
Abstract:
In accordance with some embodiments of the present disclosure, a method may include determining a range of frequencies allocated to resource blocks to be transmitted during a subsequent sub-frame slot or sounding reference symbol sub-slot. The method may also include determining an approximate center frequency of the range of frequencies. The method may additionally include modulating resource blocks of the sub-frame or sounding reference symbol sub-slot at the approximate center frequency. The method may further include transmitting the modulated resource blocks at the approximate center frequency.
Abstract:
A compound having the general formula I or a conjugate thereof, wherein various groups are as defined in the specification. A composition includes: (i) a compound having the general formula I or a conjugate thereof; and (ii) at least one surfactant selected from cationic surfactants and nonionic surfactants. Also disclosed is a preparation method for the composition and a kit comprising the composition. Further disclosed is a method for identifying and differentiating erythroblasts, basophils and lymphocytes simultaneously using the composition according to the present disclosure.
Abstract:
In accordance with the present disclosure, disadvantages and problems associated with timing accuracies of higher data rate communications systems may be reduced. In accordance with one embodiment of the present disclosure a wireless communication element comprises a first controller configured to generate data transfer information indicating a trigger value. The wireless communication element further comprises a second controller communicatively coupled to the first controller. The second controller comprises a counter configured to increment a counter value and is configured to receive the data transfer information from the first controller. The second controller is further configured to generate a data transfer trigger when the counter value corresponds with the trigger value such that the wireless communication element initiates a data transfer with a second wireless communication element in response to the data transfer trigger.
Abstract:
A control valve includes a valve body, a valve plug, two adjusting elements and two operating members. The valve body has a valve hole defined through the valve body and further defines an inlet hole and two outlet holes respectively communicating with the valve hole. The valve plug is movably assembled within the valve body. Two ends of the valve plug are respectively exposed to the outside of the valve body. The two adjusting elements are respectively mounted to two ends of the valve body and respectively adjustably resist against two ends of the valve plug. The two operating members are respectively fixed to the two adjusting elements for driving the two adjusting elements to move the valve plug within the valve hole of the valve body, and thereby controlling the control valve to switch between an open state and a closed state.
Abstract:
In a wireless 802.15.4 communication system (300), a high-speed data frame structure (340) is provided which uses the 802.15.4 SHR structure that is spread modulated to obtain the synchronization benefits of the 802.15.4 protocol, but which uses a modified data frame structure for the payload portion without using spreading to thereby improve its transmission efficiency. The transmission efficiency can be further increased by increasing the size of the data payload (and correspondingly, the frame length size).
Abstract:
Embodiments of wireless devices and transmitters are provided, which perform embodiments of automatic gain control methods. The embodiments of wireless devices and transmitters include a ramp generator, a digital gain signal generator, a combiner, and a variable gain amplifier. The ramp generator is adapted to receive a gain control input signal and to generate a gain ramp signal based on the gain control input signal. The digital gain signal generator is adapted to generate and incorporate a gain arc into a digital gain signal. A combiner is adapted to receive and combine a digital input signal with the digital gain signal, to generate a pre-compensated digital signal. The variable gain amplifier is adapted to apply gains indicated in the gain ramp signal to a pre-adjusted analog signal, which is generated based on the pre-compensated digital signal, in order to generate a gain-adjusted analog signal.
Abstract:
A technique of operating a communication device includes identifying a signal null associated with a signal to be transmitted on a first communication channel. A channel gain of the first communication channel is adjusted at a time that substantially coincides with the signal null to reduce transient noise spectrum coupled from the first communication channel to one or more second communication channels.