High Resolution Melt Analysis Workflow Graphical User Interface
    91.
    发明申请
    High Resolution Melt Analysis Workflow Graphical User Interface 审中-公开
    高分辨率熔体分析工作流图形用户界面

    公开(公告)号:US20150286776A1

    公开(公告)日:2015-10-08

    申请号:US14677115

    申请日:2015-04-02

    Abstract: A method and a system for nucleic acid melting analysis are provided. Specifically, the system includes a biochip having at least one sample containing nucleic acids. A thermal generating apparatus ramps the temperature of the at least one sample to cause dissociation of the nucleic acids. A raw melting curve reflecting dissociation of the nucleic acids is generated. To analyze the raw nucleic acid melting curve, a normalization method is selected to define a mathematical relationship between a normalized melting curve and the raw melting curve. A derivative of the normalized melting curve is calculated based upon the mathematical relationship and a derivative of the raw melting curve obtained prior to calculating the normalized melting curve. Accordingly, the derivative of the normalized melting curve is calculated without using the Savitsky-Golay (SG) filter. The elimination of an additional SG filter in the melting analysis substantially reduces computation time.

    Abstract translation: 提供了用于核酸熔解分析的方法和系统。 具体地,该系统包括具有至少一个含有核酸的样品的生物芯片。 热产生装置使所述至少一个样品的温度升高以引起核酸的解离。 产生反映核酸解离的原始解链曲线。 为了分析原始核酸解链曲线,选择归一化方法来定义归一化熔解曲线与原始熔解曲线之间的数学关系。 基于在计算归一化熔融曲线之前获得的原始熔解曲线的数学关系和导数来计算归一化熔融曲线的导数。 因此,在不使用Savitsky-Golay(SG)滤波器的情况下计算归一化熔融曲线的导数。 在熔化分析中消除额外的SG过滤器大大减少了计算时间。

    SYSTEMS AND METHODS FOR AUTO-CALIBRATION OF RESISTIVE TEMPERATURE SENSORS
    93.
    发明申请
    SYSTEMS AND METHODS FOR AUTO-CALIBRATION OF RESISTIVE TEMPERATURE SENSORS 审中-公开
    用于自动校准电阻温度传感器的系统和方法

    公开(公告)号:US20150127288A1

    公开(公告)日:2015-05-07

    申请号:US14451214

    申请日:2014-08-04

    Abstract: The invention relates to systems and methods for calibrating and using resistance temperature detectors. In one embodiment, the system includes a calibration circuit comprising a resistance temperature detector in a bridge circuit with at least one potentiometer, and a programmable gain amplifier coupled to the bridge circuit. Embodiments of the invention further comprise methods for calibrating the bridge circuit and the programmable gain amplifier for use with the resistance temperature detector and methods for determining the self heating voltage of the bridge circuit.

    Abstract translation: 本发明涉及用于校准和使用电阻温度检测器的系统和方法。 在一个实施例中,该系统包括校准电路,该校准电路包括具有至少一个电位器的桥接电路中的电阻温度检测器和耦合到该桥接电路的可编程增益放大器。 本发明的实施例还包括用于校准桥接电路的方法和用于电阻温度检测器的可编程增益放大器以及用于确定桥接电路的自身发热电压的方法。

    MICROFLUIDIC CHIP FEATURES FOR OPTICAL AND THERMAL ISOLATION
    94.
    发明申请
    MICROFLUIDIC CHIP FEATURES FOR OPTICAL AND THERMAL ISOLATION 有权
    用于光学和热隔离的微流芯片特性

    公开(公告)号:US20150118738A1

    公开(公告)日:2015-04-30

    申请号:US14508173

    申请日:2014-10-07

    Abstract: A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.

    Abstract translation: 微流体芯片包括微流体通道,用于热和光学隔离微流体通道的元件以及用于增强从微流体通道发射的光信号的检测的元件。 热隔离元件和光学隔离元件可以包括插入在相邻布置的微流体通道对之间的阻挡通道,用于防止相邻的微流体通道之间的热和光学串扰。 隔离元件可以可选地包括嵌入在相邻微流体通道之间的微流体芯片中的反射膜。 信号增强元件包括邻近微流体通道设置的结构,其反射在朝向检测器的方向上通过微流体通道或从微流体通道发射的光。 结构可以包括通过嵌入在微流体芯片中的全内反射或反射膜材料来重定向光的通道或多面的表面。

    METHODS, DEVICES, AND SYSTEMS FOR PROCESSING MULTIPLE ASSAYS BACKGROUND
    96.
    发明申请
    METHODS, DEVICES, AND SYSTEMS FOR PROCESSING MULTIPLE ASSAYS BACKGROUND 有权
    用于处理多个测定的方法,设备和系统背景技术

    公开(公告)号:US20140272927A1

    公开(公告)日:2014-09-18

    申请号:US13838411

    申请日:2013-03-15

    Abstract: Methods, devices, and systems for performing polymerase chain reaction (PCR) amplification and melt data acquisition according to a single slug approach in which a single slug in a microfluidic channel fills an entire thermal zone of the microfluidic channel, and the thermal zone used for both PCR temperature cycling and melt data acquisition. A detector may be configured to detect fluorescence from the thermal zone during the PCR temperature cycling for real-time PCR and/or during temperature ramping in the melt data acquisition. Slug position control may be achieved by detecting leading or trailing edges in a slug build target zone into which a slug passes after passing through the thermal zone. The single slug approach may break coupling between one or more events of the PCR amplification and melt data acquisition and enable events to be independently optimized.

    Abstract translation: 用于根据单细胞块方法进行聚合酶链式反应(PCR)扩增和熔融数据采集的方法,装置和系统,其中微流体通道中的单个颗粒填充微流体通道的整个热区,以及用于 PCR温度循环和熔融数据采集。 检测器可以被配置为在用于实时PCR的PCR温度循环期间和/或在熔融数据采集期间的温度斜坡期间检测来自热区域的荧光。 可以通过检测在穿过热区之后塞子通过的塞子构建目标区域中的前缘或后缘来实现塞子位置控制。 单个插段方法可能会破坏PCR扩增的一个或多个事件与熔融数据采集之间的耦合,并使事件能够独立优化。

    OPTICAL SYSTEM FOR HIGH RESOLUTION THERMAL MELT DETECTION
    97.
    发明申请
    OPTICAL SYSTEM FOR HIGH RESOLUTION THERMAL MELT DETECTION 审中-公开
    用于高分辨率热熔胶检测的光学系统

    公开(公告)号:US20140038191A1

    公开(公告)日:2014-02-06

    申请号:US13955749

    申请日:2013-07-31

    Abstract: This invention relates to systems and methods for imaging sample materials within a microfluidic device during an assay reaction process. In accordance with certain aspects of the invention, images are formed with a pixel array and a region of interest (“ROI”) is defined within the pixel array. Image values, such as fluorescent intensity, can be computed as averages of individual pixel values within the ROI. Where the ROI is subject to non-uniform conditions, such as non-uniform heating, the ROI can be divided into sub-ROIs which are sufficiently small that the condition is uniform within the sub-ROI.

    Abstract translation: 本发明涉及在测定反应过程中在微流体装置内成像样品材料的系统和方法。 根据本发明的某些方面,用像素阵列形成图像,并且在像素阵列内定义感兴趣区域(“ROI”)。 诸如荧光强度的图像值可以作为ROI内的各个像素值的平均值来计算。 在ROI受到非均匀条件(如不均匀加热)的影响下,ROI可以分为足够小的子ROI,以使子ROI内的条件一致。

    MICROFLUIDIC DEVICES WITH INTEGRATED RESISTIVE HEATER ELECTRODES INCLUDING SYSTEMS AND METHODS FOR CONTROLLING AND MEASURING THE TEMPERATURES OF SUCH HEATER ELECTRODES
    98.
    发明申请
    MICROFLUIDIC DEVICES WITH INTEGRATED RESISTIVE HEATER ELECTRODES INCLUDING SYSTEMS AND METHODS FOR CONTROLLING AND MEASURING THE TEMPERATURES OF SUCH HEATER ELECTRODES 审中-公开
    具有集成电阻加热器电极的微流体装置,包括系统和用于控制和测量这种加热器电极的温度的方法

    公开(公告)号:US20130164191A1

    公开(公告)日:2013-06-27

    申请号:US13767465

    申请日:2013-02-14

    Abstract: The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, a microfluidic device is provided that includes a microfluidic chip having a plurality of microfluidic channels and a plurality of multiplexed heater electrodes, wherein the heater electrodes are part of a multiplex circuit including a common lead connecting the heater electrodes to a power supply, each of the heater electrodes being associated with one of the microfluidic channels. The microfluidic device also includes a control system configured to regulate power applied to each heater electrode by varying a duty cycle, the control system being further configured to determine the temperature of each heater electrode by determining the resistance of each heater electrode.

    Abstract translation: 本发明涉及用于控制具有多个微流体通道的集成薄膜器件的方法和装置。 在一个实施例中,提供了一种微流体装置,其包括具有多个微流体通道的微流体芯片和多个多路加热器电极,其中加热器电极是多路复用电路的一部分,其包括将加热器电极连接到电源 ,每个加热器电极与微流体通道中的一个相关联。 微流体装置还包括控制系统,其被配置为通过改变占空比来调节施加到每个加热器电极的功率,所述控制系统还被配置为通过确定每个加热器电极的电阻来确定每个加热器电极的温度。

Patent Agency Ranking