Abstract:
A computer system having a plurality of devices including a data storage part which includes a plurality of cells to store data, and a controller to inspect whether there is a defective cell in the data storage part if a condition to execute a cell inspection function is met, and sets the defective cell to be assigned to one of the devices if a defective cell is found.
Abstract:
A nanowire composite and a method of preparing the nanowire composite comprise a template having a plurality of hollow channels, nanowires formed within the respective channels of the template, and a functional element formed by removing a portion of the template so that one or more of the nanowires formed within the portion of the template are exposed. Since the nanowire composite can be prepared in a simple manner at low costs and can be miniaturized, the nanowire composite finds application in resonators and a variety of sensors.
Abstract:
Provided are an image brightness controlling apparatus and method, and an adaptive brightness controlling apparatus and method based on the brightness degree and/or brightness range of an image. The image brightness controlling apparatus includes a brightness increment arithmetic unit for outputting a brightness increment for a pixel, and an individual component brightness increment arithmetic unit for outputting the brightness increments of individual components constituting the pixel in response to the brightness increment for a pixel. The individual component brightness increment arithmetic unit multiplies the brightness increment of the pixel by each of the unit vectors of the components constituting the pixel to obtain the brightness increments of the individual components. The image brightness controlling apparatus further includes an adder for adding the components constituting the pixel to the brightness increments of the components. The image brightness controlling apparatus and the adaptive image brightness controlling apparatus can maintain the sense of color of an image (e.g., the hue or chroma of an image) while increasing the brightness degree and brightness range of an image.
Abstract:
The present invention relates to a method for fabricating a conductive particle, the method comprising steps of: (a) preparing a particle based on a macromolecular resin; (b) forming a layer of a nano powder on a surface of the particle; and (c) subjecting the layer of the nano powder to an electroless plating. In accordance with the present invention, a nano powder is bonded on a particle based on a macromolecular resin and an electroless conductive layer is plated such that a pretreatment process of a plating process for forming a conductive particle is omitted and the plating process is simplified from twice to once, thereby reducing a toxic substance generated in a conventional process to improve a stability of the process and reduce a manufacturing cost.
Abstract:
A method and apparatus for selectively enhancing contrast depending on the level of incoming video signals while preserving colors are provided. An apparatus for enhancing the contrast and brightness of a video signal displayed on a display device includes: a first luminance level transformation circuit that receives luminance and chrominance signals, reduces the level of the luminance signal in response to a first control signal, and outputs the chrominance signals and the luminance signal whose level has been reduced; an image converting circuit that receives the output signals from the first luminance level transformation circuit and converts the received signals into RGB video signals; and a second luminance level transformation circuit that receives the RGB video signals from the image converting circuit, concurrently increases the respective levels of the RGB video signals in response to a second control signal, and outputs the RGB video signals whose levels have been increased. It is desirable that the display device is a color display tube (“CDT”), a thin film transistor liquid crystal display (“TFT-LCD”), or a plasma display panel (“PDP”).
Abstract:
A method and an apparatus for calculating source image coordinates. In an embodiment, a variation rate of the source image coordinate with respect to a converted image coordinate is calculated by a recursive computation, and variation rates are accumulated to obtain the source image coordinate. Because the converted image coordinate sequentially increases one-by-one, the variation rate may be obtained by using adding operations of previously obtained source image coordinate, rather than multiplying operations with the all of the converted image coordinates. Therefore, the source image coordinates may simply and effectively be calculated.
Abstract:
An EUV mask (10) includes an opening (26) that helps to attenuate and phase shift extreme ultraviolet radiation using a subtractive rather than additive method. An etch stop layer (20) may be provided between a lower multilayer reflective stack (14) and an upper multilayer reflective stack (22) to ensure an appropriate and accurate depth of the opening. An absorber layer (32) may be deposited within the opening to sufficiently reduce the amount of reflection within dark region (30). Optimal thicknesses and locations of the various layers are described.
Abstract:
A booting system, method, and/or medium initializing peripherals of a computer system. The booting system initializing peripherals includes an auxiliary memory device including execution codes of an embedded OS in a predetermined area thereof, a CPU for extracting and executing the codes, and a plurality of peripherals that can self-initialize in parallel in response to an instruction received from the embedded OS run by executing the codes.
Abstract:
The present invention is an interpolation device and method. According to the present invention, a plurality of pixels close to a pixel to be interpolated are sequentially set to a central pixel. When a pixel difference closest to a threshold value among pixel differences between the central pixel and a plurality of pixels around the central pixel belongs to a quasi-edge decision range, an edge interpolation and a bilinear interpolation are mixed to interpolate the pixel to be interpolated. As a result, it is possible to prevent reduction in image quality due to an edge verdict caused by unstable input image signal and perform a stable interpolation operation.
Abstract:
Methods and apparatus are provided for extreme ultraviolet phase shift masks. The apparatus comprises a substrate, a reflectance region, and an attenuating phase shifter. The reflectance region overlies the substrate. The attenuating phase shifter overlies the reflectance region. The attenuating phase shifter includes a plurality of openings that expose portions of the reflectance region. The attenuating phase shifter attenuates radiation through a combination of absorption and destructive interference. The method comprises projecting radiation having a wavelength less than 40 nanometers towards a mask having a plurality of openings through an attenuating phase shifter. The plurality of openings expose a reflectance region in the mask. The attenuating phase shifter is less than 700 angstroms thick. Radiation impinging on the reflectance region exposed by said plurality of openings is reflected whereas radiation impinging on the attenuating phase shifter is attenuated and shifted in phase. The attenuating phase shifter attenuates using absorption and destructive interference.