Abstract:
An article including a substrate, and a base layer formed on a surface of the substrate, and methods for treating the surface of the substrate are provided.
Abstract:
Disclosed herein is a battery module assembly including a plurality of battery modules, each including a plurality of battery cells or unit modules mounted in a module case in a state in which the battery cells or the unit modules are connected in series to each other, wherein the battery modules are arranged adjacent to each other in the lateral direction in a state in which the battery modules are electrically connected to each other, and a cooling member including a coolant conduit to allow a liquid coolant to flow therealong is mounted at the outside of each of the battery modules.
Abstract:
Disclosed herein is a battery module including a plurality of sequentially stacked plate-shaped battery cells and two or more heat dissipation members, wherein the first heat dissipation member extends such that one side of the first heat dissipation member at least partially covers one outermost battery cell (a) of the battery module, and the other side of the first heat dissipation member is interposed between the inside battery cells, and the second heat dissipation member extends such that one side of the second heat dissipation member at least partially covers the outermost battery cell (a) while the second heat dissipation member is not overlapped with the first heat dissipation member, and the other side of the second heat dissipation member is interposed between the inside battery cells.
Abstract:
An ion-conductive composite membrane and a method of manufacturing the same, the membrane including phosphate platelets, a silicon compound, and a Keggin-type oxometalate and/or Keggin-type heteropoly acid, wherein the phosphate platelets are three-dimensionally connected to each other via the silicon compound. An electrolyte membrane having an ion-conductive inorganic membrane or an ion-conductive organic/inorganic composite membrane effectively prevents crossover of liquid fuel without the reduction of ion conductivity in a liquid fuel cell, thereby allowing for the production of fuel cells having excellent performance.
Abstract:
Provided are an aluminium alloy and a manufacturing method thereof. In the method, aluminium and a master alloy containing a calcium (Ca)-based compound are provided. A melt is prepared, in which the master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.
Abstract:
Disclosed herein is a battery module configured in a structure in which two or more battery cells, each of which has electrode terminals formed at one end or opposite ends thereof, are stacked in a state in which the battery cells are electrically connected to each other, wherein the electrode terminals of the battery cells are formed of plate-shaped conductive members, the electrode terminals of the battery cells are folded such that the electrode terminals are in tight contact with each other to form a bent connection part at an electrical connection region between the battery cells, and the bent connection part is surrounded by a voltage sensing member mounted to the bent connection part.
Abstract:
Disclosed herein is a battery cell constructed in a structure in which an electrode assembly of a cathode/separator/anode structure is mounted in a battery case formed of a laminate sheet including a resin layer and a metal layer while the electrode assembly is connected to electrode terminals extruding out of the battery case, wherein the battery case is provided at an outer circumferential end thereof with a sealing part formed by thermally welding upper and lower parts of the laminate sheet, and a sheet-type member (‘a thermally conductive sheet’) to accelerate the dissipation of heat from the battery cell extends to the sealing part while the thermally conductive sheet partially covers the battery cell.
Abstract:
Disclosed herein is a battery module including two or more plate-shaped battery cells sequentially stacked, wherein each of the plate-shaped battery cells is constructed in a structure in which an electrode assembly of a cathode/separator/anode structure is mounted in a battery case formed of a laminate sheet including a resin layer and a metal layer, and a heat exchange member, including a plurality of heat exchange plates and a frame to which the heat exchange plates are connected, is mounted at one side of a stack of the battery cells for removing heat generated from the battery cells during the charge and discharge of the battery cells.
Abstract:
Disclosed herein is a high-power, large-capacity battery module including a plurality of battery cells or unit modules connected in series to each other such that the battery cells or the unit modules are stacked while being in tight contact with each other or being adjacent to each other, wherein the battery module is fixed such that the stacked state of the battery cells or the unit modules is maintained even when the volume of the battery cells or the unit modules changes at the time of charging and discharging the battery cells or the unit modules, and a portion of an electrode terminal connection region between the battery cells or between the unit modules is weak with respect to the volume expansion of the battery cells or the unit modules such that an expansion stress caused by the swelling of the battery cells is concentrated on the electrode terminal connection region, whereby the electrode terminal connection region is broken, and therefore, an electrical cut-off occurs at the electrode terminal connection region, when the swelling exceeds a predetermined value.
Abstract:
An article including a substrate, and a base layer formed on a surface of the substrate, and methods for treating the surface of the substrate are provided.