摘要:
A decoupling device including a lead frame and at least one capacitor unit assembly is provided. The lead frame includes a cathode terminal portion and at least two opposite anode terminal portions located at two ends of the cathode terminal portion. The two anode terminal portions are electrically connected with each other through a conductive line. The capacitor unit assembly includes multiple capacitor elements. The multiple capacitor elements of the capacitor unit assembly is connected in parallel, arrayed on the same plane and disposed on the lead frame. Each capacitor element has a cathode portion and an anode portion opposite to each other. The cathode portion of the capacitor element is electrically connected with the cathode terminal portion. The anode portion of the capacitor element is electrically connected with the anode terminal portion. When multiple capacitor unit assemblies exists, the capacitor unit assemblies are arrayed in a stacked way.
摘要:
A substrate structure including an upper surface, a lower surface and a plurality of side surfaces is provided. The lower surface is opposite to the upper surface. The side surfaces connect to the upper surface and the lower surface. Each side surface has a perpendicular surface, a first corner surface and a second corner surface. The perpendicular surface is perpendicular to the upper surface and the lower surface. The first corner surface is located between the perpendicular surface and the upper surface. The second corner surface is located between the perpendicular surface and the lower surface. The roughness of the first corner surface and the second corner surface are smaller than or equal to that of the perpendicular surface.
摘要:
A light-emitting touch keyboard includes a reflecting sheet, a touch element, a plurality of scattering/reflecting points, and at least one light emitting element. The touch element includes at least one transparent material layer. A light ray emitted by the light emitting element penetrates the transparent material layer, and then is reflected outside the touch element by the reflecting sheet and the plurality of scattering/reflecting points.
摘要:
A decoupling device includes a lead frame, a capacitor unit, a metal layer, and a high dielectric organic-inorganic composite material layer. The lead frame includes a cathode terminal portion and an anode terminal portion. The capacitor unit is disposed on the lead frame. The capacitor unit includes a cathode portion, an anode portion, and an insulation portion located between the cathode portion and the anode portion. The cathode portion is electrically connected to the cathode terminal portion, and the anode portion is electrically connected to the anode terminal portion. The high dielectric organic-inorganic composite material layer is connected to the capacitor unit in parallel via the metal layer.
摘要:
A wireless communications module coexisting with a wireless telephony communications module includes a radio frequency (RF) module, a MODEM, a clock generator and distributor and a system control logic. The system control logic issues an external interrupt (EINT) signal to the wireless telephony communications module for activating a clock source via the wireless telephony communications module. When the clock source is activated, the clock generator and distributor receives a reference clock from the activated clock source, converts the reference clock into one or more internal clocks and drives the internal clock or clocks to the RF module and the MODEM for synchronization therebetween.
摘要:
Improving the timing and/or yield of a circuit design is disclosed. Timing and yield improvements are often competing objectives in circuit design since timing improvements typically result from reducing capacitive couplings and yield improvements typically increase capacitive couplings. Trade-offs between timing and yield improvements are consequently part of the circuit design and/or optimization process.
摘要:
An embodiment of an apparatus for channel assessment is provided, comprising a radio frequency (RF) unit, a baseband unit and a microprocessor control unit (MCU). The baseband unit coupling to the RF unit directs the RF unit to selectively hop into one of a plurality of available channels in a frequency band using a pseudorandom sequence to receive a plurality of packets via the hopped channel. The MCU coupling to the baseband unit accumulates a measure for the hopped channel according to reception results of the packets and marks the hopped channel as a bad channel when the accumulated measure exceeds a predetermined threshold. The measure represents the inaccuracy extent during packet reception via the hopped channel.
摘要:
An embodiment of an apparatus for channel assessment is provided, comprising a radio frequency (RF) unit, a baseband unit and a microprocessor control unit (MCU). The baseband unit coupling to the RF unit directs the RF unit to selectively hop into one of a plurality of available channels in a frequency band using a pseudorandom sequence to receive a plurality of packets via the hopped channel. The MCU coupling to the baseband unit accumulates a measure for the hopped channel according to reception results of the packets and marks the hopped channel as a bad channel when the accumulated measure exceeds a predetermined threshold. The measure represents the inaccuracy extent during packet reception via the hopped channel.
摘要:
In a method of forming a crystalline GaN-based material, a first nucleation layer is formed on a substrate at a first temperature, followed with forming a second nucleation layer at a second temperature different from the first temperature. The first and second nucleation layers are composed of AlxInyGa(1-x-y)N. Subsequently, a layer of a crystalline GaN-based compound is epitaxy grown on the second nucleation layer.
摘要翻译:在形成结晶GaN基材料的方法中,在第一温度下在基板上形成第一成核层,随后在与第一温度不同的第二温度下形成第二成核层。 第一和第二成核层由Al x In y Ga(1-x-y)N组成。 随后,在第二成核层上生长一层结晶的GaN基化合物外延生长。
摘要:
A solid electrolytic capacitor having multiple capacitor elements and a lead frame is provided. Each capacitor element includes an anode part, a cathode part, an insulating part and at least one first slit. The cathode part is disposed opposite to the anode part. The insulating part is disposed between the anode part and the cathode part. The first slit is disposed at the anode part. The lead frame has an upper surface and a lower surface where the capacitor elements are stacked on. The lead frame includes an anode terminal part electrically connected to the anode part, and includes a cathode terminal part electrically connected to the cathode part. Specially, the anode terminal part includes at least one first projecting part, which projects toward the upper surface. The capacitor elements are stacked on the upper surface and the first slit is inserted into the first projecting part.