摘要:
A power MOSFET includes an n-type drift layer and a p-type base layer formed in a layered manner on the n-type drift layer. Trench gates are formed to penetrate the p-type base layer to reach the n-type drift layer. On the p-type base layer, n+-type source regions and p+-type regions are formed. These n+-type source regions and p+-type regions are arranged alternately along a longitudinal direction of the trench gates. The n+-type source regions and the p+-type regions are arranged with a slant with respect to the longitudinal direction of the trench gates.
摘要:
This semiconductor device an epitaxial layer of a first conductivity type formed on a surface of the first semiconductor layer, and a base layer of a second conductivity type formed on a surface of the epitaxial layer. A diffusion layer of a first conductivity type is selectively formed in the base layer, and a trench penetrates the base layer to reach the epitaxial layer. A gate electrode is formed in the trench through the gate insulator film formed on the inner wall of the trench. A first buried diffusion layer of a second conductivity type is formed in the epitaxial layer deeper than the bottom of the gate electrode. A second buried diffusion layer connects the first buried diffusion layer and the base layer and has a resistance higher than that of the first buried diffusion layer.
摘要:
A power semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type formed on the first semiconductor layer and alternately arranged along at least one direction parallel to a surface of the first semiconductor layer; a first main electrode; a fourth semiconductor layer of the second conductivity type selectively formed in a surface of the second semiconductor layer and a surface of the third semiconductor layer; a fifth semiconductor layer of the first conductivity type selectively formed in a surface of the fourth semiconductor layer; a second main electrode; and a control electrode. At least one of the second and the third semiconductor layers has a dopant concentration profile along the one direction, the dopant concentration profile having a local minimum at a position except both ends thereof.
摘要:
A semiconductor device includes: a semiconductor layer of a first conductivity type, a plurality of trenches provided on a major surface side of the semiconductor layer, an insulating film provided on an inner wall surface and on top of the trench, a conductive material surrounded by the insulating film and filling the trench, a first semiconductor region of a second conductivity type provided between the trenches, a second semiconductor region of the first conductivity type provided in a surface portion of the first semiconductor region, a mesa of the semiconductor layer provided between the trenches of a Schottky barrier diode region adjacent to a transistor region including the first semiconductor region and the second semiconductor region, a control electrode connected to the conductive material filling the trench of the transistor region and a main electrode provided in contact with a surface of the first semiconductor region, the second semiconductor region, a surface of the mesa and a part of the conductive material filling the trench of the Schottky barrier diode region. The part is exposed through the insulating film.
摘要:
Disclosed is a trench-gate semiconductor device including: a trench gate structure; a source layer having a first conductivity type, facing a gate electrode via a gate insulating film, and having a top plane; a base layer having a second conductivity type, being adjacent to the source layer, and facing the gate electrode via the gate insulating film; a semiconductor layer having the first conductivity type, being adjacent to the base layer, and facing the gate electrode via the gate insulating film without contacting the source layer; and a contact layer having the second conductivity type, contacting the source layer and base layer, having a top plane continuing with the top plane of the source layer, and having two or more peaks in an impurity concentration value profile in a depth direction from the top plane thereof, the peaks being positioned shallower than a formed depth of the source layer.
摘要:
A vertical MOSFET includes a base region formed on a drain region and a source region formed in the base region. A trench is formed to extend from the surface of the source region and penetrate the source region and has depth to reach a portion near the drain region. A gate insulating film is formed on the side walls and bottom portion of the trench and the gate electrode is formed in the trench. The impurity concentration profile of the base region has a first peak in a portion near the interface between the source region and the base region and a second peak which is formed in a portion near the interface between the base region and the drain region and is lower than the first peak. The threshold voltage is determined based on the first peak and the dose amount is determined based on the second peak.
摘要:
A power MOSFET comprising a drain layer of a first conductivity type, a drift layer of the first conductivity type provided on the drain layer, a base layer of a first or a second conductivity type provided on the drift layer, a source region of the first conductivity type provided on the base layer, a gate insulating film formed on an inner wall surface of a trench penetrating the base layer and reaching at the drift layer, and a gate electrode provided on the gate insulating film inside the trench, wherein the gate insulating film is formed such that a portion thereof adjacent to the drift layer is thicker than a portion thereof adjacent to the base layer, and the drift layer has an impurity concentration gradient higher in the vicinity of the drain layer and lower in the vicinity of the source region along a depth direction of trench.
摘要:
A semiconductor device includes: a semiconductor substrate of the first-type; a semiconductor region of the first-type formed on the substrate; a gate electrode a part of which is present within a trench selectively formed in part of the semiconductor region, and an extended top-end to have a wide width via a stepped-portion; a gate insulating-film formed between the trench and the gate electrode along a wall surface of the trench; a base layer of the second-type on the region via the film to enclose a side-wall except a bottom of the trench; a source region of the first-type adjacent to the film outside the trench in the vicinity of a top surface of the base layer; and an insulating-film formed partially between a bottom-surface of the top-end and a top-surface of the source region and formed to have a thickness larger than that of the gate insulating-film within the trench.
摘要:
A power MOSFET device comprising a low resistance substrate of the first conductivity type, a high resistance epitaxial layer of the first conductivity type formed on the low resistance substrate, a base layer of the second conductivity type formed in a surface region of the high resistance epitaxial layer, a source region of the first conductivity type formed in a surface region of the base layer, a gate insulating film formed on the surface of the base layer so as to contact the source region, a gate electrode formed on the gate insulating film, and an LDD layer of the first conductivity type formed on the surface of the high resistance epitaxial layer oppositely relative to the source region and the gate electrode, wherein the LDD layer and the low resistance substrate are connected to each other by the high resistance epitaxial layer.
摘要:
A manufacturing method of an electric power semiconductor device includes following processes. A plurality of first second conductivity type impurity implantation layers are formed in a surface of a second semiconductor layer of a first conductivity type. A first trench is formed between a first non-implantation region and one of the plurality of first second conductivity type impurity implantation layers. An epitaxial layer of the first conductivity type is formed and covers the plurality of first second conductivity type impurity implantation layers. A plurality of second second conductivity type impurity implantation layers are formed in a surface of the epitaxial layer. A second trench is formed between a second non-implantation region and one of the plurality of second second conductivity type impurity implantation layers. A third semiconductor layer of the first conductivity type is formed and covers the plurality of second second conductivity type impurity implantation layers.