Abstract:
A data transmission apparatus for use in a separate-type base station is provided. The data transmission apparatus includes: a digital unit configured to generate first data that includes transmission method information indicating a selected transmission method and data to be transmitted; a time-division synchronization control unit configured to, in response to the selected transmission method being time-division multiplexing (TDM), generate second data by including synchronization information for transmitting the first data using TDM in the first data; and a wavelength conversion unit configured to convert at least one of the first data and the second data into one or more wavelength optical signals using a predefined wavelength or a predefined group of wavelengths and transmit the wavelength optical signals to one or more radio stations.
Abstract:
An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
Abstract:
An Arrayed Waveguide Grating Router (AWGR) for wavelength multiplexing and demultiplexing is provided. According to an aspect, by generating phase differences of a plurality of received optical signals through an arrayed wavelength in which a plurality of waveguides having a predetermined length difference with respect to each other are arranged, and then coupling the optical signals with the different phase differences, wavelength multiplexing and wavelength demultiplexing are simultaneously performed using the maximum constructive interference and/or destructive interference effect of optical signals.
Abstract:
Disclosed herein is a fabrication method of a semiconductor device to order to increase an operation liability of the semiconductor device. A method for fabricating a semiconductor device comprises forming a buried-type wordline in an active region defined on a SOI substrate, forming a silicon connection region for connecting an upper silicon layer to a lower silicon layer between neighboring buried type wordlines, and recovering the upper silicon layer on the silicon connection region.
Abstract:
Disclosed are a resistive random-access memory (ReRAM) based on resistive switching using a resistance-switchable conductive filler and a method for preparing the same. When a resistance-switchable conductive filler prepared by coating a conductive filler with a material whose resistance is changeable is mixed with a dielectric material, the dielectric material is given the resistive switching characteristics without losing its inherent properties. Therefore, various resistance-switchable materials having various properties can be prepared by mixing the resistance-switchable conductive filler with different dielectric materials. The resulting resistance-switchable material shows resistive switching characteristics comparable to those of the existing metal oxide film-based resistance-switchable materials. Accordingly, a ReRAM device having the inherent properties of a dielectric material can be prepared using the resistance-switchable conductive filler.
Abstract:
A transmission apparatus, a reception apparatus, a transmission system which combines these, and a transmission and reception method thereof are provided. The transmission apparatus includes a first transmission unit which transmits data via a channel in a first band, a second transmission unit which transmits data via a channel in a second band, and a transmission control unit which controls the first transmission unit to stop transmitting the data via the channel in the first band if interference is sensed in the channel in the first band. Accordingly, data can be provided without data interruption in a wireless environment where there is interference.
Abstract:
A semiconductor device includes an insulating layer and an undoped polysilicon layer that are stacked over a semiconductor substrate. The semiconductor substrate is exposed by removing the portions of the undoped polysilicon layer and the insulating layer. The trenches are formed by etching the exposed semiconductor substrate. Isolation layers are formed in the trenches, and a doped polysilicon layer is formed by implanting impurities into the undoped polysilicon layer.
Abstract:
Aspects of the invention may include receiving a first input signal and a second input signal via respective first and second input transistors. A biasing signal, generated by a cascode bias generator, tracks the first input signal, where the biasing signal has a fixed offset with respect to the first input signal. The biasing signal may be applied to the first and second cascode transistors that may be cascoded to the first and second input transistors, respectively.
Abstract:
An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
Abstract:
Provided is a projection optical system. The projection optical system includes: A projection optical system comprising: a first optical part that comprises at least one optical lens, and projects and displays light beams; a second optical part that comprises an image forming element and at least one optical lens, and emits incident light beams as light beams with images; and a third optical part that comprises a light source unit and a deflector that is located between the first and second optical parts, and directs light beams emitted from the light source unit to the second optical part and directs the light beams with images emitted from the second optical part to the first optical part.