Abstract:
An apparatus for generating a quantization parameter for use in controlling a quantizer quantization size for use in the quantization of a video frame signal, which comprises: a first calculation circuit for receiving the video frame signal and calculating the variance of the entire video frame signal; a video slice generator for receiving the video frame signal and dividing the video frame signal into a predetermined array of video slices; a second calculation circuit for receiving the predetermined array of video slices and sequentially calculating the variance of each of the video slices; a third calculation circuit for receiving the variance of the entire video frame signal and the variance of the each of the video slices and calculating the spatial activity of each of the video slices; and a quantization control circuit, in response to the spatial activity of each of the video slices, for generating an adjusted quantization parameter corresponding to each of the video slices in order to perform a fine quantization in a video slice having a small spatial activity.
Abstract:
A neutral beam-assisted atomic layer chemical vapor deposition (ALCVD) apparatus is provided for uniformly depositing an oxide layer filling a planarization layer or a trench to increase uniformity and density of the oxide layer using neutral beams generated by a neutral beam generator without a seam or void occurring in an atomic layer deposition (ALD) or ALD-like chemical vapor deposition (CVD) process, thereby solving problems on the void or seam and low density occurring when a high-density planarization layer or a shallow trench having a width of 65 nm or less is formed, and improving a next generation oxide layer isolation process. The neutral beam-assisted ALCVD apparatus includes: an ALCVD apparatus, which deposits an oxide layer in order to form a pattern in a semiconductor substrate; and a neutral beam generator, which converts ion beams to neutral beams in order to remove a seam or void in the oxide layer deposited between the patterns, and applies the neutral beams to the oxide layer deposited to form the pattern.
Abstract:
A quantization parameter is decided in response to input data and a control signal for use in a video signal encoding device which quantizes and encodes the input data and transmits the encoded data by way of a buffer, wherein the control signal representing the degree of fullness of the buffer. The apparatus for deciding the quantization parameter comprises: a circuit, in response to the control signal, for deciding a current candidate quantization parameter for each of the slices of a current frame; a circuit for generating a slice number signal identifying the slice of the current frame that is being processed; memory for storing the current candidate quantization parameter in case the slice number signal indicates that a second slice of the current frame is being processed; and a circuit for selecting the previous candidate quantization parameter for a second slice of a preceding frame previously stored at the memory as the quantization parameter in case the slice number signal indicates that a first slice of the current frame is being processed; and for selecting the current candidate quantization parameter as the quantization parameter in case the slice number signal denotes that remaining slices of the current frame is being processed.
Abstract:
A transmission apparatus, a reception apparatus, a transmission system which combines these, and a transmission and reception method thereof are provided. The transmission apparatus includes a first transmission unit which transmits data via a channel in a first band, a second transmission unit which transmits data via a channel in a second band, and a transmission control unit which controls the first transmission unit to stop transmitting the data via the channel in the first band if interference is sensed in the channel in the first band. Accordingly, data can be provided without data interruption in a wireless environment where there is interference.
Abstract:
A transmission apparatus, a reception apparatus, a transmission system which combines these, and a transmission and reception method thereof are provided. The transmission apparatus includes a first transmission unit which transmits data via a channel in a first band, a second transmission unit which transmits data via a channel in a second band, and a transmission control unit which controls the first transmission unit to stop transmitting the data via the channel in the first band if interference is sensed in the channel in the first band. Accordingly, data can be provided without data interruption in a wireless environment where there is interference.
Abstract:
A neutral beam-assisted atomic layer chemical vapor deposition (ALCVD) apparatus is provided for uniformly depositing an oxide layer filling a planarization layer or a trench to increase uniformity and density of the oxide layer using neutral beams generated by a neutral beam generator without a seam or void occurring in an atomic layer deposition (ALD) or ALD-like chemical vapor deposition (CVD) process, thereby solving problems on the void or seam and low density occurring when a high-density planarization layer or a shallow trench having a width of 65 nm or less is formed, and improving a next generation oxide layer isolation process. The neutral beam-assisted ALCVD apparatus includes: an ALCVD apparatus, which deposits an oxide layer in order to form a pattern in a semiconductor substrate; and a neutral beam generator, which converts ion beams to neutral beams in order to remove a seam or void in the oxide layer deposited between the patterns, and applies the neutral beams to the oxide layer deposited to form the pattern.
Abstract:
A video signal processing apparatus and method and a display apparatus are provided. The video signal processing apparatus includes: an input unit through which a video signal is input; a signal processing unit which processes the video signal input through the input unit, wherein signal processing unit encodes the video signal if a transmission distance from the transmitting unit to the display apparatus is greater than a reference distance; and a transmitting unit which transmits the video signal processed by the signal processing unit to a display apparatus using wireless communication.
Abstract:
Compression of blocks of digital data is optimized by optimally selecting between frame and field format compression on a block-by-block basis. Specifically, a set of pixel data presented in a field format is compressed to provide a field compressed image signal. The set of pixel data is also presented in a frame format to provide a frame compressed image signal. The field and the frame compressed image signals are quantified; and the compressed image signal having the lesser amount of bits is then selected. The selection effectively improves the quality of the transmitted signal and reduces the structural complexity and manufacturing cost of the image signal encoding apparatus.