Abstract:
Aspects of the subject disclosure may include, for example, a system for receiving topology information from a plurality of waveguide systems or other transmission devices, the topology information identifying one or more transmission media available to each waveguide system for transmitting or receiving electromagnetic waves, and updating a topology of a communication system from the topology information provided by the plurality of waveguide systems. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a waveguide system for determining an event associated with a mode of transmitting or receiving electromagnetic waves on a surface of a transmission medium, identifying according to the event an updated mode for transmitting or receiving adjusted electromagnetic waves on the surface of a transmission medium, and transmitting or receiving the adjusted electromagnetic waves based on the updated mode. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes a transmitter that generates a first electromagnetic wave to convey data, the first electromagnetic wave having at least one carrier frequency and corresponding wavelength. A coupler couples the first electromagnetic wave to a transmission medium having at least one inner portion surrounded by a dielectric material, the dielectric material having an outer surface and a corresponding circumference, wherein the coupling of the first electromagnetic wave to the transmission medium forms a second electromagnetic wave that is guided to propagate along the outer surface of the dielectric material via at least one guided-wave mode that can include an asymmetric mode, wherein the at least one carrier frequency is within a microwave or millimeter-wave frequency band and wherein the at least one corresponding wavelength is less than the circumference of the transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes a first coupler that guides a first electromagnetic wave to a first junction to form a second electromagnetic wave that is guided to propagate along the outer surface of the transmission medium via one or more guided-wave modes. These mode(s) have an envelope that varies as a function of angular deviation and/or longitudinal displacement. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a waveguide system that includes a transmission device having a coupler positioned with respect to a transmission medium to facilitate transmission or reception of electromagnetic waves that transport communications data. The electromagnetic waves propagate along an outer surface of the transmission medium. A training controller detects an impairment on the transmission medium adverse to the transmission or reception of the electromagnetic waves and adjusts the electromagnetic waves to reduce the effects of the impairment on the transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for determining a usage pattern, and sending instructions to a plurality of waveguide systems to transmit or receive electromagnetic waves along a surface of each of a plurality of wires according to the usage pattern. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for transmitting first electromagnetic waves that propagate on a surface of a component of a transit system, and receiving second electromagnetic waves that propagate on the surface of the component of the transit system. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a waveguide system that includes a transmission device having a coupler positioned with respect to a transmission medium to facilitate transmission or reception of electromagnetic waves that transport communications data. The electromagnetic waves propagate along an outer surface of the transmission medium. A training controller detects an impairment on the transmission medium adverse to the transmission or reception of the electromagnetic waves and adjusts the electromagnetic waves to reduce the effects of the impairment on the transmission medium. Other embodiments are disclosed.
Abstract:
A dielectric waveguide coupling system for launching and extracting guided wave communication transmissions from a wire. At millimeter-wave frequencies, wherein the wavelength is small compared to the macroscopic size of the equipment, transmissions can propagate as guided waves guided by a strip of dielectric material. Unlike conventional waveguides, the electromagnetic field associated with the dielectric waveguide is primarily outside of the waveguide. When this dielectric waveguide strip is brought into close proximity to a wire, the guided waves decouple from the dielectric waveguide and couple to the wire, and continue to propagate as guided waves about the surface of the wire.
Abstract:
Aspects of the subject disclosure may include, for example, a system including a frequency mixer that combines a signal and a carrier wave to form a combined signal, and a transmitter that generates a transmission based on the combined signal. The system can also include a coupling device that emits the transmission as an electromagnetic wave guided by an outer surface of a transmission medium. The electromagnetic wave can propagate longitudinally along the surface of the transmission medium and at least partially around the surface of the transmission medium. Other embodiments are disclosed.