Abstract:
The present invention provides a method for manufacturing an array substrate, an array substrate, and a display device. The method for manufacturing an array substrate, including a step of forming a thin film transistor and a storage capacitor on a substrate, the thin film transistor including a gate, a source, and a drain, and the storage capacitor including a first pole plate and a second pole plate, wherein, arranging the source, the drain, and the first pole plate in a single layer through implanting dopant ions into an amorphous silicon layer formed on the substrate by one ion-implantation process, and through crystallizing an amorphous silicon material forming the amorphous silicon layer and activating the dopant ions by a laser irradiation process. Accordingly, process steps are simplified and a process cost is reduced greatly, and the performances of the array substrate and the display device are increased.
Abstract:
An array substrate, a method for fabricating the same, a display panel and a display device are disclosed. The array substrate comprises a display area and a non-display area that is outside the display area. The method comprises: forming a metal layer on a base substrate, the metal layer comprising a conductive pattern in the display area and a first electrode in the non-display area; forming a protective layer on the metal layer, a thickness of the protection layer in the non-display area being less than a thickness of the protection layer in the display area; forming a display electrode layer on the protection layer and removing the display electrode layer in the non-display area; and removing the protection layer in the non-display area.
Abstract:
The present disclosure provides a low temperature polycrystalline silicon field effect TFT array substrate and a method for producing the same and a display apparatus. The method: using a stepped photo resist process to form a polycrystalline silicon active layer and a lower polar plate of a polycrystalline silicon storage capacitor simultaneously on a substrate in one lithographic process; forming a gate insulation layer on the polycrystalline silicon active layer and the lower polar plate of the polycrystalline silicon storage capacitor; forming a metal layer on the gate insulation layer and etching the metal layer to form a gate electrode and gate lines connected with the gate electrode, a source electrode, a drain electrode and data lines connected with the source electrode and the drain electrode; forming a passivation layer, a photo resist layer and a pixel electrode layer in sequence and patterning the passivation layer, the photo resist layer and the pixel electrode layer to form patterns of an interlayer insulation layer via hole and a pixel electrode in one lithographic process; forming a pixel definition layer on the pixel electrode. The present disclosure may reduce times of lithographic processes for the low temperature polycrystalline silicon field effect TFT array substrate, improve the yield and reduce the costs.
Abstract:
The present invention provides a substrate dry device and a method for drying the substrate, the substrate dry device comprises a cavity, dry bars and a sensor disposed on the top of the cavity, liquid immerging the substrate is accommodated within the cavity, with the dry bars comprising a first dry bar and a second dry bar arranged parallel to each other, with a gap is formed therebetween and with the sensor disposed on one end or on two ends of the gap for monitoring a position in which the substrate is moved away from the liquid. By use of the above arrangement, the gas is ejected through the dry bars to the surface of the substrate which has moved away from the liquid, the tension of the surface of the liquid film on the substrate is changed by marangori effect under the action of the gas and the surface tension gradient of the liquid film makes the liquid film shrink so that the surface of the substrate becomes dry.
Abstract:
The present invention provides a substrate dry device and a method for drying the substrate, the substrate dry device comprises a cavity, dry bars and a sensor disposed on the top of the cavity, liquid immerging the substrate is accommodated within the cavity, with the dry bars comprising a first dry bar and a second dry bar arranged parallel to each other, with a gap is formed therebetween and with the sensor disposed on one end or on two ends of the gap for monitoring a position in which the substrate is moved away from the liquid. By use of the above arrangement, the gas is ejected through the dry bars to the surface of the substrate which has moved away from the liquid, the tension of the surface of the liquid film on the substrate is changed by marangori effect under the action of the gas and the surface tension gradient of the liquid film makes the liquid film shrink so that the surface of the substrate becomes dry.
Abstract:
Provided is a display panel including a base substrate, a display function film layer, a filter film layer, and a fingerprint recognition circuit. The display function film layer is disposed on the base substrate, and the display function film layer is provided with a plurality of light-emitting regions. The filter film layer is disposed on a side of the display function film layer away from the base substrate, wherein the filter film layer is capable of transmitting light emitted from the plurality of light-emitting regions, and a material of the filter film layer comprises a conductive material. The fingerprint recognition circuit is disposed on the base substrate, wherein the fingerprint recognition circuit is connected to the filter film layer, and configured for fingerprint recognition based on light reflected by an obstacle and received by the filter film layer.
Abstract:
Provided is a metal-oxide thin-film transistor. The metal-oxide thin-film transistor includes a gate, a gate insulation layer, a metal-oxide semiconductor layer, a source electrode, a drain electrode, and a passivation layer that are successively disposed on a base substrate; wherein the source electrode and the drain electrode are both in a laminated structure, wherein the laminated structure of the source electrode or the drain electrode at least includes a bulk metal layer and an electrode protection layer; wherein the electrode protection layer includes a metal or a metal alloy; the electrode protection layer is at least disposed between the metal-oxide semiconductor layer and the bulk metal layer; wherein a metal-oxide layer is disposed between the electrode protection layer and the bulk metal layer.
Abstract:
A display panel and a display device are provided. The display panel comprises a substrate, a plurality of sub-pixels, a plurality of data lines, a plurality of wiring structures and a plurality of pads. The substrate comprises a display area and a non-display area comprising a bending area. The sub-pixels and data lines are in the display area and electrically connected with each other. The wiring structures are in the bending area and electrically connected with the data lines. At least one wiring structure comprises a plurality of hollow patterns connected successively, each hollow pattern comprises a first conductive part and a second conductive part connected with each other. The plurality of pads are in the non-display area and located on a side of the plurality of wiring structures away from the display area and electrically connected with the plurality of wiring structures.
Abstract:
An array substrate, a display panel, a display apparatus, and a method for manufacturing the array substrate are provided. The array substrate includes: a base substrate; a plurality of pixels, at least one of the pixels including a pixel driver circuit and a light-emitting unit electrically connected to the pixel driver circuit; a fingerprint recognition structure including a first capacitor electrode configured to form a capacitor for fingerprint recognition between at least a part of a touch body and the first capacitor electrode in response to the at least a part of the touch body covering the first capacitor electrode. The fingerprint recognition structure is in the at least one pixel, the pixel driver circuit includes a thin film transistor including an active layer and a gate, and the first capacitor electrode is in the same layer as one of the active layer or the gate of the thin film transistor.
Abstract:
Provided is an anti-dazzling device, including a first electrode, a second electrode and a dimming structure, wherein the first electrode and the second electrode are disposed opposite to each other, and the dimming structure is disposed between the first electrode and the second electrode and is configured to change a light transmittance of the anti-dazzling device under action of voltage. An OLED display device and a method for manufacturing an anti-dazzling device are also provided.