摘要:
Disclosed is a scanning electron microscope (SEM) for realizing high-precision dimension measurement of a sample, such as an ArF exposure photoresist, that requires the measurement of a dimension by a low S/N signal waveform. To this end, partial waveforms (or partial images) of sample signal waveforms (or an images) acquired from a dimension measurement target sample and a sample material of the same kind are registered in advance, a measurement target signal waveform (or an image) obtained from the dimension measurement target sample and the sample registration waveform are combined, and a dimension of the dimension measurement target pattern is calculated based on the combination result.
摘要:
In the inspection apparatus for a defect of a semiconductor and the method using it for automatically detecting the defect on a semiconductor wafer and presuming the defect occurrence factor using the circuit design data, a plurality of shapes are formed from the circuit design data by deforming the design data with respect to shape deformation items stipulated for respective defect occurrence factor for comparison with the inspection object circuit pattern. The defect is detected by comparison of the group of shapes formed and the actual pattern. Further, the occurrence factors of these defects are presumed, and the defects are classified according to respective factor.
摘要:
As measurement accuracy required for the scanning electron microscope (SEM) for measuring a pattern width becomes stringent, a technique of reducing the difference in a measured dimension between the SEM's is desired. However, the conventional technique of evaluating the difference in a measured dimension between the SEM's cannot separate the difference in a measured dimension between the SEM's themselves and a dimensional change resulting from deformation of the pattern itself. Moreover, the technique of reducing the difference in a measured dimension between the SEM's needs an operator for reducing the difference in a measured dimension between the SEM's for each measurement pattern shape. In this invention, a pattern at the same position is measured for a plurality of times with each SEM, and a different between extrapolated values of measured values obtained by the respective SEM's is calculated, whereby separation between the difference in a measured dimension between the SEM's and a dimensional change resulting from deformation of the pattern itself is made possible. Moreover, matching electron beam image profiles between the SEM's using an operator that simulates a difference in beam diameter between the SEM's makes it possible to reduce the difference in a measured dimension between the SEM's, not depending on a dimensional measurement pattern shape.
摘要:
The present invention relates to a CDSEM (scanning electron microscope) capable of evaluating and presenting the measurement repeatability as a tool with a high degree of accuracy without being influenced by fluctuations in micro-minute shape that tend to increase with the microminiaturization of semiconductor patterns, and to a method for evaluating accuracy of repeated measurement using the scanning electron microscope. There is provided a function whereby when measuring a plurality of times the same part to be measured, by making use of a micro-minute pattern shape such as the roughness included in the pattern, pattern matching with a roughness template image is performed to correct two-dimensional deviation in position of the part to be measured on an enlarged measurement image acquired, and then an enlarged measurement area image is extracted and acquired. This makes it possible to eliminate variation in measurements caused by the micro-minute pattern shape.
摘要:
An apparatus and method for inspecting a defect of a circuit pattern formed on a semiconductor wafer includes a defect classifier have a comparison shape forming section for forming a plurality of comparison shapes corresponding to an SEM image of an inspection region by deforming the shape of the circuit pattern in accordance with a plurality of shape deformation rules using design data corresponding to the circuit pattern within the inspection region and a shape similar to the SEM image of the inspection region out of the plurality of comparison shapes formed and selected as the comparison shape, and a shape comparing and classifying section for classifying the SEM image using information of the comparison shape selected in the comparison shape forming section and the inspection shape of the circuit pattern of the SEM image of the inspection region.
摘要:
The present invention provides a charged particle beam apparatus used to measure micro-dimensions (CD value) of a semiconductor apparatus or the like which captures images for measurement. For the present invention, a sample for calibration, on which a plurality of polyhedral structural objects with known angles on surfaces produced by the crystal anisotropic etching technology are arranged in a viewing field, is used. A beam landing angle at each position within a viewing field is calculated based on geometric deformation on an image of each polyhedral structural object. Beam control parameters for equalizing the beam landing angle at each position within the viewing field are pre-registered. The registered beam control parameters are applied according to the position of the pattern to be measured within the viewing field when performing dimensional measurement. Accordingly, the present invention provides methods for reducing the variation in the CD value caused by the variation in the electron beam landing angle with respect to the sample with an equal beam landing angle and methods for reducing the instrumental error caused by the difference in the electron beam landing angle between apparatuses.
摘要:
Disclosed is a scanning electron microscope (SEM) for realizing high-precision dimension measurement of a sample, such as an ArF exposure photoresist, that requires the measurement of a dimension by a low S/N signal waveform. To this end, partial waveforms (or partial images) of sample signal waveforms (or an images) acquired from a dimension measurement target sample and a sample material of the same kind are registered in advance, a measurement target signal waveform (or an image) obtained from the dimension measurement target sample and the sample registration waveform are combined, and a dimension of the dimension measurement target pattern is calculated based on the combination result.
摘要:
The present invention relates to a CDSEM (scanning electron microscope) capable of evaluating and presenting the measurement repeatability as a tool with a high degree of accuracy without being influenced by fluctuations in micro-minute shape that tend to increase with the microminiaturization of semiconductor patterns, and to a method for evaluating accuracy of repeated measurement using the scanning electron microscope. There is provided a function whereby when measuring a plurality of times the same part to be measured, by making use of a micro-minute pattern shape such as the roughness included in the pattern, pattern matching with a roughness template image is performed to correct two-dimensional deviation in position of the part to be measured on an enlarged measurement image acquired, and then an enlarged measurement area image is extracted and acquired. This makes it possible to eliminate variation in measurements caused by the micro-minute pattern shape.
摘要:
A method and apparatus for efficiently executing two types of measurements with an optical measuring device and a scanning electron microscope are provided. For example, The method and apparatus for executing following steps of calculating an average of the dimensional values of said plurality of scanned feature objects; and calculating an offset of a dimensional value on the basis of a difference between the calculated average value and the dimensional value of said feature object obtained when the light is irradiated. The offset between measurement values between the optical measuring device and the scanning electron microscope can be required precisely by the above subject matter.
摘要:
A defect inspection method and apparatus therefor for a pattern to be inspected having a plurality of chips formed so as to be identical detect an image signal of a pattern to be inspected and when the image signal is to be compared with a detected image signal of an adjacent or separated pattern to be inspected on the substrate, convert the gray level so that the brightness of each of two image signals for comparing one or both of the detected image signals is almost identical in the local region by linear conversion having a gain and offset, and when a pattern is inspected using it, highly sensitive defect inspection for a pattern to be inspected for detecting a defect of a semiconductor wafer can be realized.