Abstract:
A shallow trench isolation structure has a trench formed in a substrate, a silicon oxynitride layer conformally formed on the sidewalls and bottom of the trench, and a high density plasma (HDP) oxide layer substantially filling the trench.
Abstract:
In a photolithography process, a photoresist layer is formed on a substrate. A photomask is aligned over the substrate to transfer pattern images defined in the photomask on the substrate. The photomask includes first and second patterns of different light transmission rates, and a dummy pattern surrounding the second pattern having a light transmission rate lower than that of the first pattern. The substrate is exposed to a light radiation through the photomask. The photoresist layer then is developed to form the pattern images. The dummy pattern is dimensionally configured to allow light transmission, but in a substantially amount so that the dummy pattern is not imaged during exposure.
Abstract:
A method of forming an overlay mark is provided. A first material layer is formed on a substrate, and then a first trench serving as a trench type outer mark is formed in the first material layer. The first trench is partially filled with the first deposition layer. A second material is formed over the first trench and the first deposition layer. A second trench is formed exposing the first deposition layer within the first trench. The second trench is partially filled with a second deposition layer forming a third trench. A third material layer is formed on the substrate to cover the second deposition layer and the second material layer. A step height is formed on the third deposition layer between the edge of the first trench and the center of the first trench. A raised feature serving as an inner mark is formed on the third deposition layer.
Abstract:
A method of code programming a mask read only memory (ROM) is disclosed. According to the method, a first photoresist layer is formed over word lines and a gate oxide layer of a substrate already having implanted bit lines. The first photoresist layer is patterned to develop pre-code openings over all of the memory cells, which correspond to intersecting word and bit lines. The first photoresist layer is then hardened using either a treatment implant or a treatment plasma. Subsequently, a second photoresist layer is formed over the first photoresist layer and patterned to develop real-code openings over memory cells which are actually to be coded with a logic “0” value. Each memory cell to be coded is then implanted with implants passing through the pre-code openings and the real code openings and into the memory cell.
Abstract:
A method of fabricating a non-volatile memory is provided. A longitudinal strip of stacked layer is formed over a substrate. The longitudinal strip is a stacked layer comprising a gate dielectric layer, a conductive layer and a cap layer. A buried bit line is formed in the substrate on each side of the longitudinal strip. The longitudinal strip is patterned to form a plurality of stacked blocks. Thereafter, a dielectric layer is formed over the substrate. The dielectric layer exposes the cap layer of the stacked blocks. Some cap layers of the stacked blocks are removed to expose the conductive layer underneath. A word line is formed over the dielectric layer to connect stacked blocks in the same row serially together.
Abstract:
A spacer forming method for a biosensor that has a biosensor possessing a capillary sampling channel and electrical connecting tracks for the use of a specific portable meter. A pair of electrodes is printed on an insulating base plate to be the transducer of the electrochemical biosensor by means of the screen-printing technology. The advanced thick-film printing technology is employed to construct the spacer component of the sampling channel that precisely controls the volume of a sample solution. Therefore, the spacer forming method reduces the usage of adhesive that otherwise causes a serious problem during a continuous punching procedure. Furthermore, the embedded switch pad on the biosensor is introduced to be instead of a micro switch in a connector of the portable meter.
Abstract:
Methods for making integrated circuit devices, such as high density memory devices and memory devices exhibiting dual bits per cell, include forming multiple oxide fences on a semiconductor substrate between multiple polybars. The oxide fences create a hole pre-code pattern that facilitates ion implantation into trenches disposed between the polybars. The holes, or voids, formed by the oxide fences provide greater control of the critical dimension of ion implantation, for example, the critical dimension of the trench sidewalls. Semiconductor devices used in the manufacture of memory devices include the oxide fences during the manufacturing process.
Abstract:
A phase shifting mask repair process is described. The process uses an etching gas or a hydrofluoric acid solution to etch the quartz substrate and the characteristics of the phase shifter layer being only slightly etched when clean with a NH3/H2O2/H2O2 solution to calculate and adjust the respective processing time accordingly. As a result, the phase difference between the quartz substrate and the MoSiON phase shifter layer stays relatively the same before and after the repair process.
Abstract:
In accordance with the present invention, a method is provided for shrinking critical dimension in semiconductor processes. This method comprises a step of performing an over-exposure process to a photosensitive layer to form a patterned photosensitive layer on a substrate by using a patterned reticle. Due to the unexposed region of the photosensitive layer being diminished by over-exposure the critical dimension is shrunk. Then, a sacrificial layer is applied for the purpose of pattern reverse-transferring. Next, the patterned photosensitive layer is removed such that the pattern is transferred to the sacrificial layer with a shrunk critical dimension. In cooperation of the present exposure technology with the present invention, the shrinkage of a critical dimension is accomplished, for example, using an I-line exposure light source in a critical dimension of 0.25 &mgr;m process, or using a deep UV (ultraviolet) exposure light source in a critical dimension of 0.13 &mgr;m process.
Abstract:
A method for forming a protrusive alignment-mark in semiconductor devices is disclosed. A photolithography process is performed to form a photoresist layer on a substrate wherein the substrate has an element region and an alignment region, and the photoresist layer has an element photoresist region and an alignment photoresist region. Afterwards, a first dielectric layer is deposited on the element photoresist region and the alignment photoresist region. The excess portion of first dielectric layer above the photoresist layer is removed such that the photoresist layer is coplanar with the first dielectric layer and thus the photoresist layer is exposed. The photoresist layer on the element region and said alignment region is stripped to form a protrusive alignment-mark on the alignment region.