摘要:
An HDP-CVD system is described, including an HDP-CVD chamber for depositing a material on a wafer, and a pre-heating chamber disposed outside of the HDP-CVD chamber to pre-heat the wafer, before the wafer is loaded in the HDP-CVD chamber, to a temperature higher than room temperature and required in the deposition step to be conducted in the HDP-CVD chamber. The pre-heating chamber is equipped with a heating lamp for the pre-heating. The wafer has been formed with a trench before being pre-heated.
摘要:
A method of forming an isolation structure, comprising: (a) providing a base having a recess; (b) forming a stop layer on the base and in the recess; (c) forming a dielectric material on the stop layer so as to allow the rest of the recess to be filled with the dielectric material; (d) removing the dielectric material over the base by performing a chemical mechanical polishing (CMP) process until a part of the stop layer is exposed so as to form a dielectric layer in the recess; and (e) removing a part of the stop layer, wherein the another part of the stop layer and the dielectric layer filled in the recess constitute the isolation structure.
摘要:
A method of fabricating metal film stacks is described that reduces or eliminates adverse effects of photolithographic misalignments. A bottom critical dimension is increased by removal of a bottom titanium nitride barrier.
摘要:
A method of fabricating metal film stacks is described that reduces or eliminates adverse effects of photolithographic misalignments. A bottom critical dimension is increased by removal of a bottom titanium nitride barrier.
摘要:
A method for manufacturing a semiconductor device is disclosed. A semiconductor substrate such as bare silicon is provided, and a dielectric layer is formed over the semiconductor substrate. An opening is provided within the dielectric layer by removing a portion of the dielectric layer. A conformal first conductive layer is formed over the dielectric layer and the opening. A conformal second conductive layer is formed over the first conductive layer. A conformal barrier layer is formed over the second conductive layer.
摘要:
A method of forming an isolation structure, comprising: (a) providing a base having a recess; (b) forming a stop layer on the base and in the recess; (c) forming a dielectric material on the stop layer so as to allow the rest of the recess to be filled with the dielectric material; (d) removing the dielectric material over the base by performing a chemical mechanical polishing (CMP) process until a part of the stop layer is exposed so as to form a dielectric layer in the recess; and (e) removing a part of the stop layer, wherein the another part of the stop layer and the dielectric layer filled in the recess constitute the isolation structure.
摘要:
A metallization process is provided. The metallization process comprises the following steps. First, a semiconductor base having at least a silicon-containing conductive region is provided. Afterwards, nitrogen ions are implanted into the silicon-containing conductive region. Next, a first thermal process is performed on the semiconductor base for repairing the surface of the semiconductor base. Then, a metal layer is formed on the surface of the semiconductor base and the metal layer covers the silicon-containing conductive region. Lastly, a second thermal process is performed on the semiconductor base covered with the metal layer so as to form a metal silicide layer on the silicon-containing conductive region.
摘要:
A metal pad formation method and metal pad structure using the same are provided. A wider first pad metal is formed together with a first metal. A dielectric layer is then deposited thereon. A first opening and a second opening are formed in the dielectric layer to respectively expose the first metal and the first pad metal. Then, the first opening is filled by W metal to generate a first via. Finally, a second metal and a second pad metal are formed to respectively cover the first via and the first pad metal to generate the metal pad.
摘要:
A method for forming conductive wiring is provided. First, a material layer having at least a trench is provided. A conductive material layer is formed on the material layer to fill the trench and cover the top surface of the material layer. A patterned mask layer is formed on the conductive material layer. The conductive material layer not covered by the patterned mask layer is removed. After that, the patterned mask layer is removed.
摘要:
A method for forming a UV transmission passivation coating on an integrated circuit, such as EPROM, after completion of the active device and metal routing circuitry comprises depositing a first barrier dielectric layer over the integrated circuit; smoothing out underlying features by applying a layer of flowable dielectric over the first dielectric layer; and depositing a second dielectric layer over the flowable dielectric. Next a photoresist pattern is made over the second dielectric coating, having an opening layer over the at least one conductive pad. A wet etch process is used to remove portions of the second dielectric layer exposed by the opening. A dry etch process is used to remove portions of the remaining layers exposed through the opening, including the remaining portions of the second dielectric layer, the flowable dielectric layer and the first dielectric layer, down to the conductive pad. Finally, the photoresist is removed. The second dielectric layer is composed of a first protective dielectric, such as silicon oxynitride, deposited using plasma enhanced chemical vapor deposition, to protect the flowable dielectric layer from the subsequent wet etch process. The second dielectric layer also includes a top layer deposited using plasma enhanced chemical vapor deposition and comprising phosphorus doped silica to provide a stress buffer, and to prevent penetration of mobile ions to the first dielectric layer. The phosphorus doped silica layer is deposited using both high frequency and low frequency power for plasma formation during the deposition to increase the quality of the layer.