摘要:
A light emitting diode (100 or 150) includes a diode structure containing a quantum well (120), an enhancement layer (142), and a barrier layer (144 or 148) between the enhancement layer (142) and the quantum well (120). The enhancement layer (142) supports plasmon oscillations at a frequency that couples to photons produced by combination of electrons and holes in the quantum well (120). The barrier layer serves to block diffusion between the enhancement layer (142) and the diode structure.
摘要:
An optical device may include a light transmissive medium having two sides. On one side may be a high reflectivity mirror and on the other side may be a plurality of partial reflectivity mirrors that may be guided mode resonance or nanodot mirrors. An optical system may have a plurality of light inputs, a light transmissive medium, and a plurality of light outputs from the light transmissive medium The light transmissive medium may have a high reflectivity mirror on one side and a plurality of partial reflectivity mirrors on a second side.
摘要:
A lens is described which includes a substrate having a first side and an opposite second side. A first guided mode resonance grating is supported by the first side of the substrate and a second guided mode resonance grating is supported by the second side of the substrate. The second guided mode resonance grating can be offset from the first guided mode resonance grating. The second guided mode resonance grating can shape and reflect a wave front of an incident optical beam within the substrate towards the first guided mode resonance grating. The first guided mode resonance grating can redirect the reflected incident optical beam out of the second side of the substrate.
摘要:
A photodetector receiver circuit for an optical communication system includes an optical photodetector which receives optical signals and converts them into an electrical current. In one illustrative embodiment, a dynamic impedance module which switches the receiver circuit between a high impedance state and a low impedance state and a buffer stage which receives the electrical current and converts the electrical current into a voltage signal compatible with a digital circuit. A method for receiving an optical signal includes, receiving the optical signal and converting it into an electrical pulse train, switching a dynamic impedance module between a high impedance state and a low impedance state, transforming the electrical pulse train into an output voltage signal using a buffer stage, and receiving the output voltage signal by a digital circuit.
摘要:
One example relates to an optical engine comprising a given layer of given material overlaying an optical waveguide of another material. The given layer of given material can comprise an aligning seat to receive an optical transmitter to provide the optical signal. The aligning seat can also align the optical transmitter such that the optical transmitter provides the optical signal in a direction that is substantially non-oblique relative to a longitudinal axis of the optical waveguide. The optical engine can also include an optical signal redirector to tilt the optical signal by a tilt angle. The optical waveguide can comprise a grating coupler to diffract the optical signal provided at the tilt angle into the optical waveguide.
摘要:
A broadband optical beam splitter can comprise a non-metallic high contrast grating including a substrate and an array of posts attached to a surface of the substrate. The grating can have a subwavelength period with respect to a preselected optical energy wavelength, the preselected optical energy wavelength within the range of 400 nm to 1.6 μm. Additionally, the broadband optical beam splitter can have a bandwidth of 80 nm to 120 nm and can have an optical energy loss of less than 5%.
摘要:
A spatial light modulator includes an array of pixels, with each of the pixels having a dimension smaller than a wavelength of light to be modulated. Each of the pixels further has a permittivity that can he controlled using an electronic signal applied to the pixel.
摘要:
Various embodiments of the present invention are directed to surface-plasmon-enhanced electromagnetic-radiation-emitting devices and to methods of fabricating these devices. In one embodiment of the present invention, an electromagnetic-radiation-emitting device comprises a multilayer core, a metallic device layer, and a substrate. The multilayer core has an inner layer and an outer layer, wherein the outer layer is configured to surround at least a portion of the inner layer. The metallic device layer is configured to surround at least a portion of the outer layer. The substrate has a bottom conducting layer in electrical communication with the inner layer and a top conducting layer in electrical communication with the metallic device layer such that the exposed portion emits surface-plasmon-enhanced electromagnetic radiation when an appropriate voltage is applied between the bottom conducting layer and the top conducting layer.
摘要:
Grating couplers that enable efficient coupling between waveguides and optical fibers are disclosed. In one aspect, a grating coupler includes a transition region that includes a wide edge and tapers away from the edge toward a waveguide disposed on a substrate. The coupler also includes a sub-wavelength grating disposed on the substrate adjacent to the edge. The grating is composed of a series of non-uniformly distributed, approximately parallel lines and separated by grooves with a depth to output light from the grating with TM polarization.
摘要:
Various embodiments of the present invention are directed to surface-plasmon-enhanced electromagnetic-radiation-emitting devices and to methods of fabricating these devices. In one embodiment of the present invention, an electromagnetic-radiation-emitting device comprises a multilayer core, a metallic device layer, and a substrate. The multilayer core has an inner layer and an outer layer, wherein the outer layer is configured to surround at least a portion of the inner layer. The metallic device layer is configured to surround at least a portion of the outer layer. The substrate has a bottom conducting layer in electrical communication with the inner layer and a top conducting layer in electrical communication with the metallic device layer such that the exposed portion emits surface-plasmon-enhanced electromagnetic radiation when an appropriate voltage is applied between the bottom conducting layer and the top conducting layer.