摘要:
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.
摘要:
An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standard OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.
摘要:
An optoelectronic device may be fabricated on a three dimensional surface by transferring a material from an elastomeric stamp to a non-planar substrate. The use of an elastomeric stamp allows for patterned layers to be deposited on a non-planar substrate with reduced chance of damage to the patterned layer. The material may be deposited on the stamp while the stamp is in a planar configuration or after the stamp has been deformed to a shape generally the same as the shape of the non-planar substrate. The material may be transferred by cold welding. The device may include organic layers.
摘要:
A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength λ1 and a second photoactive region having a characteristic absorption wavelength λ2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that λ1 is at least about 10% different from λ2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
摘要:
A photoactive fiber is provided, as well as a method of fabricating such a fiber. The fiber has a conductive core including a first electrode. An organic layer surrounds and is electrically connected to the first electrode. A transparent second electrode surrounds and is electrically connected to the organic layer. Other layers, such as blocking layers or smoothing layers, may also be incorporated into the fiber. The fiber may be woven into a cloth.
摘要:
An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.
摘要:
A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.
摘要:
An unipolar organic injection laser in which electrically-stimulated intraband transitions result in lasing. An active region includes at least one organic injector layer and at least one organic emitter layer. Each organic emitter layer has a first energy level and a second energy level on a same side of an energy gap defined by a conduction band and a valance band. Charge carriers are injected through the organic injector layer into the first energy level of the organic emitter layer when a voltage is applied across active region. The difference in energy between the first and second energy levels produces radiative emissions when charge carriers transition from the first energy level to the second energy level. Population inversion is maintained between the first and second energy levels, producing stimulated emission and lasing.
摘要:
An organic photosensitive optoelectronic device having a plurality of cells disposed between a first electrode and a second electrode. Each cell includes a photoconductive organic hole transport layer adjacent to a photoconductive organic electron transport layer. A metal or metal substitute is disposed between each of the cells. At least one exciton blocking layer is disposed between the first electrode and the second electrode.
摘要:
The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.